【题意】给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数。n<=17。

【算法】容斥原理+生成树计数(矩阵树定理)

【题解】每个生成树方案是一个公司有无修路的01排列,定义集合x为公司x有修路的方案集合,则题目要求集合交。

对于若干集合的集合并补集,即x个公司不修路的方案数,就是除去这x个公司的边的生成树数。

ans=Σ(-1)^k g(k),0<=k<=n-1。g(k)表示枚举k个公司不修的生成树数。

复杂度O(2^(n-1)*n^3)。

注意:

1.答案变成非负数。

2.公司边集最大N*N。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,MOD=1e9+;
int a[maxn][maxn],b[maxn][maxn*maxn][],sz[maxn],n,ans;//
bool c[maxn];
void gcd(int a,int b,int &x,int &y){
if(!b){x=;y=;}
else{gcd(b,a%b,y,x);y-=x*(a/b);}
}
int inv(int a){int x,y;gcd(a,MOD,x,y);return (x%MOD+MOD)%MOD;}
int det(int n){
for(int i=;i<=n;i++)for(int j=;j<=n;j++)a[i][j]=(a[i][j]+MOD)%MOD;
bool y=;
for(int i=;i<=n;i++){
int r=i;
for(int j=i+;j<=n;j++)if(a[j][i]>a[r][i])r=j;
if(r!=i){y^=;for(int j=i;j<=n;j++)swap(a[r][j],a[i][j]);}
int v=inv(a[i][i]);
for(int j=i+;j<=n;j++){
for(int k=n;k>=i;k--){
a[j][k]=(a[j][k]-1ll*a[j][i]*v%MOD*a[i][k]%MOD+MOD)%MOD;
}
}
}
int as=y?MOD-:;
for(int i=;i<=n;i++)as=1ll*as*a[i][i]%MOD;
return as;
}
void insert(int u,int v){a[u][v]--;a[v][u]--;a[u][u]++;a[v][v]++;}
int solve(){
memset(a,,sizeof(a));
for(int i=;i<n;i++)if(!c[i]){//
for(int j=;j<=sz[i];j++)insert(b[i][j][],b[i][j][]);
}
return det(n-);
}
void dfs(int x,int y){
if(x==n){
ans=(ans+y*solve())%MOD;
}
else{
c[x]=;
dfs(x+,y);
c[x]=;
dfs(x+,-y);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&sz[i]);
for(int j=;j<=sz[i];j++)scanf("%d%d",&b[i][j][],&b[i][j][]);
}
ans=;
dfs(,);
printf("%d",(ans+MOD)%MOD);//
return ;
}

【BZOJ】4596: [Shoi2016]黑暗前的幻想乡的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. BZOJ 4596: [Shoi2016]黑暗前的幻想乡

    Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...

  3. ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...

  4. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  5. BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)

    传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...

  6. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

随机推荐

  1. 【week10】psp

    项目 内容 开始时间 结束时间 中断时间 净时间 2016/11/19(星期六) 写博客 吉林一日游规格说明书 10:30 15:10 20 260 2016/11/20(星期日) 看论文 磷酸化+三 ...

  2. ci事务

    CI框架百问百答:CodeIgniter的事务用法?--第9问 时间 2013-06-06 10:57:45  CSDN博客 原文  http://blog.csdn.net/haor2756/art ...

  3. Vue2.0 render:h => h(App)

    new Vue({ router, store, //components: { App } vue1.0的写法 render: h => h(App) vue2.0的写法 }).$mount( ...

  4. 使用JMeter代理录制app测试脚本

    准备条件:JMeter.手机app 上一篇介绍过录制Web测试脚本的方式有两种,使用代理和使用第三方工具.本篇录制app测试脚本只讨论使用代理的方式,其他方式以后有机会再补充.其实Web和app使用代 ...

  5. 【前端学习笔记05】JavaScript数据存储Cookie相关方法封装

    //Cookie设置 //设置新cookie function setCookie(name,value,duration){ var date = new Date(); date.setTime( ...

  6. [六]SpringBoot 之 连接数据库(mybatis)

    在进行配置之前首先要了解springboot是如何使用纯java代码方式初始化一个bean的 以前的版本是在xml中使用beans标签,在其里面配置bean,那么纯Java代码怎么实现呢? 答案就是使 ...

  7. Android 通过浏览器打开应用

    在很多应用的web站,其实都有这样一个功能,就是直接在网页中打开应用,接下来的就来探讨一下这个功能的实现,有些地方也我还没弄明白,还请懂的大神指点. 首先,得说一点不好消息,在微信中,这样的方式是行不 ...

  8. 【Visual Installer】如何注册自已的文件类型

    一.前言 这几天在做公司软件产品的安装包,产品有一个特定的后缀名为:.isbimqs,需要的功能是双击该后缀名文件后,会有一个启动程序launchRevit.exe去打开Revit,由Revit去打开 ...

  9. msiexec安装参数详解

    原文链接地址:https://blog.csdn.net/wilson_guo/article/details/8151632 1 安装 /i表示安装,/x 表示卸载/f表示修复./l*v 表示输出详 ...

  10. Hive:HQL和Mysql:SQL 的区别

    HQL: group by 后面的参数一定要和select非聚集函数一致 where 1 要改成 where 1 = 1