题意:略。

思路:网上是用卷积或者做的,不太会。 因为上一题莫比乌斯有个类似的部分,所以想到了每个素因子单独考虑。

我们用C(x^p)表示p次减少分布在K次减少里的方案数,由隔板法可知,C(x^p)=C(K+p-1,K-1);  而且满足C(x)有积性,即gcd(x,y)==1时,有C(x*y)=C(x)*C(y);

所以C数组可以线性筛。 把筛素数的线性筛,稍微改一下即可,low[i]代表的是i的最小素数因子x的p次方,即x^p|i,p最大,num[i]代表的是幂次p。

那么g(x)=Σ f(a)*C(x/a); g数组也可以线性筛。这里相当于手动卷积。

所以C和g函数分别线性筛即可。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
const int Mod=1e9+;
int rev[maxn],f[maxn],ans[maxn],jc[maxn],fz[maxn],p[maxn];
int vis[maxn],low[maxn],num[maxn],C[maxn],cnt,N,K;
int qpow(int a,int x){
int res=; while(x){
if(x&) res=(ll)res*a%Mod;
a=(ll)a*a%Mod; x>>=;
} return res;
}
void getC()
{
cnt=; rep(i,,maxn) low[i]=num[i]=;
for(int i=;i<maxn;i++){
if(!vis[i]) p[++cnt]=i,low[i]=i,num[i]=;
for(int j=;j<=cnt&&i*p[j]<maxn;j++){
vis[i*p[j]]=;
if(i%p[j]==){
low[i*p[j]]=low[i]*p[j];
num[i*p[j]]=num[i]+;
break;
}
low[i*p[j]]=p[j];
num[i*p[j]]=;
}
}
}
int main()
{
jc[]=;rep(i,,maxn-) jc[i]=(ll)jc[i-]*i%Mod;
rev[maxn-]=qpow(jc[maxn-],Mod-);
for(int i=maxn-;i>=;i--) rev[i]=(ll)rev[i+]*(i+)%Mod;
getC();
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&K);
fz[]=; rep(i,,N) fz[i]=(ll)fz[i-]*(i+K-)%Mod,ans[i]=;
rep(i,,N) scanf("%d",&f[i]);
C[]=;
rep(i,,N) C[i]=(ll)C[i/low[i]]*rev[num[i]]%Mod*fz[num[i]]%Mod;
for(int i=;i<=N;i++){
for(int j=i;j<=N;j+=i)
(ans[j]+=(ll)f[i]*C[j/i]%Mod)%=Mod;
}
rep(i,,N-) printf("%d ",ans[i]);
printf("%d\n",ans[N]);
}
return ;
}

到此,引申一下有个题,给定N<1e7,K<1e9,求1^K+2^K+3^+...N^K。

这里由于K过大,显然不能用拉格朗日插值法。 我们用线性筛来做,如果i是素数,我们就快速幂求f[i]=i^K,否则就用之前的结果就好了,即f[i]=f[low[i]]^f[i/low[i]];

由于素数的个数大约=N/lgN; 而快速幂的复杂度是lgK。所以整个算法差不多是线性的。

HDU - 5628:Clarke and math (组合数&线性筛||迪利克雷卷积)的更多相关文章

  1. HDU 5628 Clarke and math——卷积,dp,组合

    HDU 5628 Clarke and math 本文属于一个总结了一堆做法的玩意...... 题目 简单的一个式子:给定$n,k,f(i)$,求 然后数据范围不重要,重要的是如何优化这个做法. 这个 ...

  2. HDU 5628 Clarke and math dp+数学

    Clarke and math 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5628 Description Clarke is a patient ...

  3. HDU 5628 Clarke and math Dirichlet卷积+快速幂

    题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...

  4. HDU.5628.Clarke and math(狄利克雷卷积 快速幂)

    \(Description\) \[g(i)=\sum_{i_1|i}\sum_{i_2|i_1}\sum_{i_3|i_2}\cdots\sum_{i_k|i_{k-1}}f(i_k)\ mod\ ...

  5. bzoj 3309 DZY Loves Math——反演+线性筛

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...

  6. hdu 5648 DZY Loves Math 组合数+深搜(子集法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5648 题意:给定n,m(1<= n,m <= 15,000),求Σgcd(i|j,i&am ...

  7. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  8. 【HDU 6428】Calculate 莫比乌斯反演+线性筛

    题解 代码 #include <bits/stdc++.h> using namespace std; typedef long long ll; const ll mod = 1LL&l ...

  9. 【BZOJ3309】DZY Loves Math(线性筛)

    题目: BZOJ 3309 分析: 首先,经过一番非常套路的莫比乌斯反演(实在懒得写了),我们得到: \[\sum_{T=1}^n \sum_{d|T}f(d)\mu(\frac{T}{d})\lfl ...

随机推荐

  1. Memcached get 命令

    Memcached get 命令获取存储在 key(键) 中的 value(数据值) ,如果 key 不存在,则返回空. 语法: get 命令的基本语法格式如下: get key 多个 key 使用空 ...

  2. Huffuman Coding (哈夫曼编码)

    哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种.Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头 ...

  3. MySQL行锁、间隙锁、Next-Key锁

    InnoDB是一个支持行锁的存储引擎,它有三种行锁的算法: Record Lock:行锁,单个行记录上的锁. Gap Lock:间隙锁,锁定一个范围,但不包括记录本身.GAP锁的目的,是为了防止幻读. ...

  4. C#第一个windows窗体应用程序

    Form1.cs using System; …… namespace self_1_1{ public partial class Form1 : Form { public Form1() { I ...

  5. 24.Java中atomic包中的原子操作类总结

    1. 原子操作类介绍 在并发编程中很容易出现并发安全的问题,有一个很简单的例子就是多线程更新变量i=1,比如多个线程执行i++操作,就有可能获取不到正确的值,而这个问题,最常用的方法是通过Synchr ...

  6. HDU-5695-拓扑排序+优先队列

    Gym Class Time Limit: 6000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  7. es6 nodejs compose

    const compose = (...fns) => { let len = fns.length; let fn_index = len - 1; let fn_result; functi ...

  8. 【MySQL】日期与字符串间的相互转换

    字符串转日期 下面将讲述如何在MySQL中把一个字符串转换成日期: 背景:rq字段信息为:20100901 无需转换的: SELECT * FROM tairlist_day WHERE rq> ...

  9. C#中Abstract和Virtua笔记,知识

    在C#的学习中,容易混淆virtual方法和abstract方法的使用,现在来讨论一下二者的区别.二者都牵涉到在派生类中与override的配合使用. 一.Virtual方法(虚方法) virtual ...

  10. ZOJ 2283 Challenge of Wisdom 数论,Dilworth Theorem,求最长反链 难度:2

    Challenge of Wisdom Time Limit: 2 Seconds      Memory Limit: 32768 KB Background "Then, I want ...