SQL on Hadoop系统的最新进展(1)
转自:http://blog.jobbole.com/47892/
为什么非要把SQL放到Hadoop上? SQL易于使用。
那为什么非得基于Hadoop呢?the robust and scalable architecture of Hadoop
目前SQL on Hadoop产品主要有以下几种:
Hive, Tez/Stinger, Impala, Shark/Spark, Phoenix, Hawq/Greenplum, HadoopDB, Citusdata等。本文主要讨论Hive, Tez/Stinger, Impala, Shark以及传统开源数据仓库brighthouse的特点和最新进展;下一篇文章会讨论Hawq/Greenplum, Phoenix, HadoopDB, Citusdata。
在互联网企业中一般的基于Hadoop的数据仓库的数据来源主要有以下几个:
1,通过Flume/Scribe/Chukwa这样的日志收集和分析系统把来自Apache/nginx等Server cluster的日志收集到HDFS上,然后通过Hive创建Table时指定SerDe把非结构化的日志数据转化成结构化数据。
2,通过Sqoop这样的工具把用户和业务维度数据(一般存储在Oracle/MySQL中)定期导入Hive,那么OLTP数据就有了一个用于OLAP的副本了。
3,通过ETL工具从其他外部DW数据源里导入的数据。
目前所有的SQL on Hadoop产品其实都是在某个或者某些特定领域内适合的,没有silver bullet。像当年Oracle/Teradata这样的满足几乎所有企业级应用的产品在现阶段是不现实的。所以每一种SQL on Hadoop产品都在尽量满足某一类应用的特征。
典型需求:
1, interactive query (ms~3min)
2,data analyst, reporting query (3min~20min)
3,data mining, modeling and large ETL (20 min ~ hr ~ day)
4,机器学习需求(通过MapReduce/MPI/Spark等计算模型来满足)
Hive
Hive是目前互联网企业中处理大数据、构建数据仓库最常用的解决方案,甚至在很多公司部署了Hadoop集群不是为了跑原生MapReduce程序,而全用来跑Hive SQL的查询任务。
对于有很多data scientist和analyst的公司,会有很多相同table的查询需求。那么显然每个人都从hive中查数据速度既慢又浪费资源。我们在 online的数据库系统部署的时候都会在DB前面部署Redis或者memcache用于缓存用户经常访问的数据。那么OLAP应用也可以参考类似的方 法,把经常访问的数据放到内存组成的集群中供用户查询。
Facebook针对这一需求开发了Presto,一个把热数据放到内存中供SQL查询的系统。这个设计思路跟Impala和Stinger非常类似了。 使用Presto进行简单查询只需要几百毫秒,即使是非常复杂的查询,也只需数分钟即可完成,它在内存中运行,并且不会向磁盘写入。Facebook有超 过850名工程师每天用它来扫描超过320TB的数据,满足了80%的ad-hoc查询需求。
目前Hive的主要缺点:
1,data shuffle时网络瓶颈,Reduce要等Map结束才能开始,不能高效利用网络带宽
2,一般一个SQL都会解析成多个MR job,Hadoop每次Job输出都直接写HDFS,性能差
3,每次执行Job都要启动Task,花费很多时间,无法做到实时
4,由于把SQL转化成MapReduce job时,map,shuffle和reduce所负责执行的SQL功能不同。那么就有Map->MapReduce或者 MapReduce->Reduce这样的需求。这样可以降低写HDFS的次数,从而提高性能。
目前Hive主要的改进:
1,同一条hive sql解析出的多个MR任务的合并。
由Hive解析出来的MR jobs中有非常多的Map->MapReduce类型的job,可以考虑把这个过程合并成一个MRjob。https://issues.apache.org/jira/browse/HIVE-3952
2,Hive query optimizer
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/optimize-joins.html
- Joins where one side fits in memory
- Star schema join的改进,就是原来一个大表和多个小表在不同column匹配的条件下join需要解析成多个map join + MR job,现在可以合并成一个MR job
这个改进方向要做的就是用户不用给太多的hint,hive可以自己根据表的大小、行数等,自动选择最快的join的方法(小表能装进内存的话就用 map join,Map join能和其他MR job合并的就合并)。这个思路跟cost-based query optimizer有点类似了,用户写出来的SQL在翻译成执行计划之前要计算那种执行方式效率更高。
3,ORCFile
ORCFile是一种列式存储的文件,对于分析型应用来说列存有非常大的优势。 http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
原来的RCFile中把每一列看成binary blob,没有任何语义,所以只能用通用的zlib,LZO,Snappy等压缩方法。
ORCFile能够获取每一列的类型(int还是string),那么就可以使用诸如dictionary encoding, bit packing, delta encoding, run-length encoding等轻量级的压缩技术。这种压缩技术的优势有两点:一是提高压缩率;二是能够起到过滤无关数据的效果
现在ORCFile中主要有三种编码:
- bit编码,所有数据类型都可以用。Google’s protocol buffers and uses the high bit to represent whether this byte is not the last and the lower 7 bits to encode data
- run-length encoding(行程长度压缩算法),int类型专用。
- dictionary encoding,string类型专用。同时这个dictionary还能帮助过滤查询中的predicate条件。
Run length Encoding对某些列压缩会减少存储3-4个数量级,对内存提升也有2-3个数量级,Dictionary Encoding一般对磁盘空间减少大概20倍,对内存空间大概减少5倍,根据Google PowerDrill的实验,在常见的聚合查询中这些特殊的编码方式会对查询速度有2-3个数量级的提升.
Predicate Pushdown:原来的Hive是把所有的数据都读到内存中,然后再判断哪些是符合查询需求的。在ORCFile中数据以Stripe为单元读取到内 存,那么ORCFile的RecordReader会根据Stripe的元数据(Index Data,常驻内存)判断该Stripe是否满足这个查询的需求,如果不满足直接略过不读,从而节省了IO。
关于ORCFile的压缩效果,使用情况和性能可以参考hortonworks的博客
http://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
未来ORCFile还会支持轻量级索引,就是每一列中以1W行作为一组的最大值和最小值。
通过对ORCFile的上述分析,我想大家已经看到了brighthouse的影子了吧。都是把列数据相应的索引、统计数据、词典等放到内存中参与查询条件的过滤,如果不符合直接略过不读,大量节省IO。关于brighthouse大家可以参考下面的分析。
4,HiveServer2的Security和Concurrency特性
http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/
HiveServer2能够支持并发客户端(JDBC/ODBC)的访问。
Cloudera还搞了个Sentry用于Hadoop生态系统的的安全性和授权管理方面的工作。
这两个特点是企业级应用Hadoop/Hive主要关心的。
5,HCatalog Hadoop的统一元数据管理平台
目前Hive存储的表格元数据和HDFS存储的表格数据之间在schema上没有一致性保证,也就是得靠管理员来保证。目前Hive对列的改变只会修改 Hive 的元数据,而不会改变实际数据。比如你要添加一个column,那么你用hive命令行只是修改了了Hive元数据,没有修改HDFS上存储的格式。还得 通过修改导入HDFS的程序来改变HDFS上存储的文件的格式。而且还要重启Hive解析服务,累坏了系统管理员。
- Hadoop系统目前对表的处理是’schema on read’,有了HCatlog就可以做到EDW的’schema on write’。
- HCatlog提供REST接口提供元数据服务,有利于不同平台(HDFS/HBase/Oracle/MySQL)上的不同数据(unstructured/semi-structured/structured)共享。能够把Hadoop和EDW结合起来使用。
- HCatlog对用户解耦了schema和storage format。举个例子吧,在写MR任务的时候,目前是把所有的行数据都当成Text来处理,Text一点点解析出各个Column需要编程人员来控制。 有个HCatlog之后编程人员就不用管这事了,直接告诉它是哪个Database->Table,然后schema可以通过查询HCatlog来 获得。也省得数据存储格式发生变化之后,原来的程序不能用的情况发生。
6,Vectorized Query Execution in Hive
https://issues.apache.org/jira/browse/HIVE-4160
- 目前Hive中一行一行的处理数据,然后调用lazy deserialization解析出该列的Java对象,显然会严重影响效率。
- 多行数据同时读取并处理(基本的比较或者数值计算),降低了一行一行处理中过多的函数调用的次数,提高了CPU利用率和cache命中率
- 需要实现基于向量的vectorized scan, filter, scalar aggregate, group-by-aggregate, hash join等基本操作单元。
Tez/Stinger
- 底层执行引擎不再使用MR,而是使用基于YARN的更加通用的DAG执行引擎
- MR是高度抽象的Map和Reduce两个操作,而Tez则是在这两个操作的基础上提供了更丰富的接口。把Map具体到Input, Processor, Sort, Merge, Output,而Reduce也具体化成Input, Shuffle, Sort, Merge, Processor, Output。在MR程序里,编程人员只需编写对应的Processor逻辑,其他的是通过指定几种具体实现来完成的;而在Tez里面给我们更大的自由 度。其实这个跟Spark有点类似了,都是提供更丰富的可操作单元给用户。
- 传统的Reduce只能输出到HDFS,而Tez的Reduce Processor能够输出给下一个Reduce Processor作为输入。
- Hot table也放到内存中cache起来
- Tez service:预启动container和container重用,降低了每次Query执行计划生成之后Task启动的时间,从而提高实时性。
- Tez本身只是YARN框架下得一个library,无需部署。只需指定mapreduce.framework.name=yarn-tez
http://dongxicheng.org/mapreduce-nextgen/apache-tez-newest-progress/
未来工作方向:
Cost-based optimizer,基于统计选择执行策略,多表JOIN时按照怎样的顺序执行效率最高。
统计执行过程中每个中间表的Row/Column等数目,从而决定启动多少个MR执行
Impala
Impala可以看成是Google Dremel架构和MPP (Massively Parallel Processing)结构的混合体。
https://github.com/cloudera/impala
Dremel论文: http://research.google.com/pubs/pub36632.html
优点:
- 目前支持两种类型的JOIN:broadcast join和partition join。对于大表JOIN时由于内存限制,装不下时就要dump部分数据到磁盘,那样就会比较慢
- Parguet列存格式,同时能够处理嵌套数据。通过嵌套数据以及扩展的SQL查询语义,在某些特定的场景上避开了JOIN从而解决了一部分性能的bottleneck。
- Cloudera Manager 4.6以后会有slow query的分析功能
- Runtime Code Generation http://blog.cloudera.com/blog/2013/02/inside-cloudera-impala-runtime-code-generation/
- impala可以直接使用硬盘上的数据而不经过hdfs
缺点:
- impala不会按照group by的列排序
- 目前不支持UDF,impala 1.2即将支持Hive UDFs(Java写的)和Impala native UDFs and UDAs(接口类似PosgreSQL)
- 不支持像Hive的Serializer/Deserializer,从而使得它做从非结构化到结构化数据的ETL工作比较麻烦。
- 不支持线上查询容错,如果参与查询的某个node出错,Impala将会丢弃本次查询。
- 安全方面的支持还比较差。impalad之间传输的数据没有加密,不支持表或者列级别的授权。
- 每个PlanFragment执行尽量并行化,但是有的时候并不是很容易。例如Hash Join需要等到其中一个表完全Scan结束才能开始。
不过虽然有这么多缺点,但是很多公司还是开始尝试Impala了。以百度为例,百度尝试把MySQL接入Impala的后端作为存储引擎,同时实现 相应操作对应的PlanFragment,那么用户来的query还是按照原来的解析方法解析成各种PlanFragment,然后直接调度到对应的节点 (HDFS DataNode/HBase RegionServer/MySQL)上执行。会把某些源数据或者中间数据放到MySQL中,用户的query涉及到使用这部分数据时直接去MySQL 里面拿。
Shark/Spark
由于数据能放到内存尽量放到内存,使用内存非常aggressive。优点是做JOIN时会比较快,缺点是占用内存太大,且自行管理内存,占用内存后不会释放。
支持UDF
性能:
特别简单的select…where查询,shark性能的提升不明显。(因为hive也不怎么费时间)
但是如果查询比较复杂select…join…where…group by,hive的job数目会比较多,读写HDFS次数增多,时间自然会变长。当内存还足够大的时候shark性能是最好的,如果内存不够装下所有的数据时性能会下降,但还是会比Hive好很多。
SQL on Hadoop产品需要向传统数据仓库学习的地方
以开源数据仓库brighthouse(基于MySQL的数据仓库存储引擎)为例。
VLDB 2008 论文 <<Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries>>
brighthouse的SQL解析用的是MySQL的代码,开发了brighthouse专用的optimizer,executor以及storage engine
brighthouse的数据存储通过三层来组织:Data Pack, Data Pack Node, Knowledge Node
- DP(Data Pack):brighthouse是列存储的,每个DP存储一列中64K个单元的数据。
- DPN(Data Pack Node):DPN和DP是一对一的关系,DPN中记录每个DP数据对应的一些统计值(max,min,count,sum)
- KN(Knowledge Node):DP的更详细的数据信息和DP之间关系的信息
KN又分为一下三个部分:
- HISTs(Histograms):数值类型列的统计直方图,能够快速判断这个DP是否符合查询条件。
- CMAPs(Character Maps):文本类型的位图,用于快速查找字符。(优化关键字like)
- Pack-To-Pack:等值JOIN操作时产生的两个列(DP)之间关系的位图。
DPN和KN相当于DP的一些统计信息,占整个DP的1%的存储空间,所以可以轻松装入内存。他们是为了快速定位哪些DP是跟这个query相关 (relevant)的,哪些是不相关(irrelevant)的,哪些是可能相关(suspect)的。从而减小IO读取的数据量,提高性能。
性能测试:http://www.fuchaoqun.com/tag/brighthouse/
从这个性能测试中可以看出:
1,压缩率:infobright比MyISAM/tar.gz的压缩率都要高很多
2,查询性能:跟建了索引的MyISAM表相比,查询速度也要快3-6倍
总之,大家都缺少的是:
1,workload management or query optimization
多个表的JOIN如何执行,例如3个表的JOIN会有6种执行策略,那么哪一种才是效率最高的呢。显然要通过计算每种执行顺序的开销来获得。在传统数据库 或者数据仓库领域(Oracle/Teradata/PostgreSQL)都有非常好的查询优化器,而在分布式系统中该如何衡量这些指标(磁盘IO,网 络带宽,内存)与最后查询效率之间的关系是个需要认真研究的问题。
2,关联子查询correlated sub-queries还是没有谁能够实现。
在TPC-H中又很多关联子查询的例子,但是现在的SQL on Hadoop产品都不支持。听Impala的人说,他们客户对这个的需求不是很强烈,大部分关联子查询可以转化成JOIN操作。但是目前的商业产品像Hawq/Greenplum都是支持关联子查询的。
SQL on Hadoop系统的最新进展(1)的更多相关文章
- SQL on Hadoop中用到的主要技术——MPP vs Runtime Framework
转载声明 本文转载自盘点SQL on Hadoop中用到的主要技术,个人觉得该文章对于诸如Impala这样的MPP架构的SQL引擎和Runtime Framework架构的Hive/Spark SQL ...
- 盘点SQL on Hadoop中用到的主要技术
转载自:http://sunyi514.github.io/2014/11/15/%E7%9B%98%E7%82%B9sql-on-hadoop%E4%B8%AD%E7%94%A8%E5%88%B0% ...
- SQL on Hadoop技术综述
一.系统架构 runtime framework v.s. mpp 在SQL on Hadoop系统中,有两种架构: 1.一种是基于某个运行时框架来构建查询引擎,典型案例是Hive: 2.另一种是仿照 ...
- DataPipeline丨LinkedIn元数据之旅的最新进展—Data Hub
作者:Mars Lan, Seyi Adebajo, Shirshanka Das 译者: DataPiepline yaran 作为全球最大的职场社交平台,LinkedIn的数据团队不断致力于扩展其 ...
- Hadoop系统架构
一.Hadoop系统架构图 Hadoop1.0与hadoop2.0架构对比图 YARN架构: ResourceManager –处理客户端请求 –启动/监控ApplicationMaster –监控N ...
- Hive--可执行SQL的Hadoop数据仓库管理工具
Hive是一个基于HDFS的数据仓库软件,可理解为数据库管理工具:Hive的功能主要有: 1. 支持使用SQL对分布式存储的大型数据集进行读.写.管理,将SQL转化成MapReduce任务执行: 2. ...
- SQL on Hadoop 的真相(1)
转自:http://blog.jobbole.com/86710/ 这是一组系列博文,目的是详尽介绍 SQL-on-Hadoop .本系列的第一篇会介绍 Hadoop 系统的存储引擎和在线事务处理(简 ...
- 安装单机Hadoop系统(完整版)——Mac
在这个阴雨绵绵的下午,没有睡午觉的我带着一双惺忪的眼睛坐在了电脑前,泡上清茶,摸摸已是略显油光的额头(笑cry),,奋斗啊啊啊啊!!%>_<% 1.课程回顾. 1.1 Hadoop系统运行 ...
- R-Tree空间索引算法的研究历程和最新进展分析
转自原文 R-Tree空间索引算法的研究历程和最新进展分析,2008 摘要:本文介绍了空间索引的概念.R-Tree数据结构和R-Tree空间索引的算法描述,并从R-Tree索引技术的优缺点对R-Tre ...
随机推荐
- 区域医疗移动医疗影像解决方案--基于HTML5的PACS--HTML5图像处理【转】
基于HTML5的PACS--图像伪彩 摘要: 要查看此系统更多的图像处理功能请参考:区域医疗移动医疗影像解决方案--基于HTML5的PACS--HTML5图像处理套用句广告语:哪里不会点哪里,so e ...
- Tengine是由淘宝网发起的Web服务器项目。它在Nginx的基础上,针对大访问量网站的需求,添加了很多高级功能和特性
简介 Tengine是由淘宝网发起的Web服务器项目.它在Nginx的基础上,针对大访问量网站的需求,添加了很多高级功能和特性.Tengine的性能和稳定性已经在大型的网站如淘宝网,天猫商城等得到了很 ...
- spring测试实例
我们以前要进行单元测试,必须先得到ApplicationContext对象,再通过它得到业务对象,非常麻烦,重复代码也多.基于spring3的单元测试很好的解决了这个问题 基于spring3的单元测试 ...
- Jquery重新学习之八[Ajax运用总结B]
上一篇简单介绍普通javascript以及Jquery的AJAX方法,其中Jquery.ajax()是功能比较强悍的底层方法,可以更多地关注实现过程中的细节:除Jquery.ajax()方法外,Jqu ...
- [Unity3D]Unity3D游戏开发之异步记载场景并实现进度条读取效果
大家好,我是秦元培.欢迎大家关注我的博客,我的博客地址是:blog.csdn.net/qinyuanpei.终于在各种无语的论文作业中解脱了,所以立即抓紧时间来这里更新博客.博主本来计划在Unity3 ...
- 查看Buffer Pool使用情况--[转]
----源自:微软官方博客论坛 我的SQL Server buffer pool很大,有办法知道是哪些对象吃掉我的buffer Pool内存么?比方说,能否知道是哪个数据库,哪个表,哪个index占用 ...
- ubuntu开启ftp服务
首先再防火墙中开启21和20端口 iptables -A INPUT -p tcp --dport -j ACCEPT iptables -A INPUT -p tcp --dport -j ACCE ...
- hdu 4494 Teamwork (可行流的最小流)
去年通话邀请赛的B题,当时居然过的那么少...明明是一道非常裸的可行流最小流麽..仅仅要对每种人分别求一下可行最小流加起来就能够了.建图是对每一个点拆点,容量上下届都设为v[i],然后每一个点间能连边 ...
- 摘:通过ICursor对Table进行操作(添加、修改、删除)
通过ICursor对Table进行操作(添加.修改.删除) 连接上数据表的目的就是对其进行包括浏览.添加.修改.删除等基本操作. 浏览功能,之前文章中一提到,就是将Itable转换为DataTable ...
- REST测试工具之curl(URL多参数)
在微服务理念满天飞的今天,面对REST接口的机会越来越多. 除了打开浏览器的方法,我们还有一个很方便的方法测试REST接口,尤其是接口返回JSON数据格式时. 这就是curl. 一.安装篇 给一个可以 ...