一、softmax函数

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是:

$$  S_i = \frac{e^j }{ \sum\nolimits_{j} e^j}  \tag{1}$$

更形象的如下图表示:

softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标。

二、softmax相关求导

当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度,这个时候我们就要求Loss对每个权重矩阵的偏导,然后应用链式法则。那么这个过程的第一步,就是对softmax求导传回去,不用着急,我后面会举例子非常详细的说明。在这个过程中,你会发现用了softmax函数之后,梯度求导过程非常非常方便。

下面我们举出一个简单例子。

根据图片网络所示,我们能得到下面公式:

z4 = w41*o1+w42*o2+w43*o3

z5 = w51*o1+w52*o2+w53*o3

z6 = w61*o1+w62*o2+w63*o3

z4,z5,z6分别代表结点4,5,6的输出,01,02,03代表是结点1,2,3往后传的输入.

那么我们可以经过softmax函数得到:

$$a_4 = \frac{e^{z_4}}{e^{z_4} + e^{z_5} + e^{z_6}}, a_5 = \frac{e^{z_5}}{e^{z_4} + e^{z_5} + e^{z_6}}, a_6 = \frac{e^{z_6}}{e^{z_4} + e^{z_5} + e^{z_6}}   \tag{2}$$

经过上面的形式化后,接下来我们选用交叉熵作为损失函数来推导Softmax的偏导。交叉熵的形式为:

$$ Loss = -\sum_{i} y_i \cdot \ln a_i    \tag{3}$$

其中$y$代表我们的真实值,$a$代表我们softmax求出的值。$i$代表的是输出结点的标号。

为了形式化说明,我这里认为训练数据的真实输出为第$j$个为1,其它均为0,那么Loss就变成了$Loss = - y_j \cdot \ln a_j = - \ln a_j$,累和已经去掉,现在我们开始求导数。

参数的形式在该例子中,总共分为w41,w42,w43,w51,w52,w53,w61,w62,w63.这些,那么比如我要求出w41,w42,w43的偏导,就需要将Loss函数求偏导传到结点4,然后再利用链式法则继续求导即可。

举个例子此时求w41的偏导为:

$$
\frac{\partial Loss}{\partial w_{41}} = \frac{\partial Loss}{\partial a_{4}} \cdot \frac{\partial a_4}{\partial z_{4}} \cdot \frac{\partial z_4}{\partial w_{41}}
\\= - \frac{1}{a_4} \cdot \frac{\partial a_4}{\partial z_{4}} \cdot 1  \tag{4}
$$

上式中,只要求出$\frac{\partial a_4}{\partial z_{4}}$就可以完成推导。这里分为两种情况:

1. 当$j=i$时:

$$ \frac{\partial a_j}{\partial z_i} = \frac{\partial}{\partial z_i}(\frac{e^{z_j}}{\sum_k e^{z_k}})
\\=\frac{(e^{z_j})' \cdot \sum_k e^{z_k} - e^{z_j} \cdot e^{z_j}}{(\sum_k e^{z_k})^2}
\\=\frac{e^{z_j}}{\sum_k e^{z_k}} - \frac{e^{z_j}}{\sum_k e^{z_k}} \cdot \frac{e^{z_j}}{\sum_k e^{z_k}}
\\=a_j \cdot (1-a_j)
\tag{5} $$

将(5)式带入(4)中,得到$ \frac{\partial Loss}{\partial w_{j}} = -\frac{1}{a_j} \cdot a_j \cdot (1-a_j) = a_j - 1$。

2. 当$j \neq i$时:

$$ \frac{\partial a_j}{\partial z_i} = \frac{\partial}{\partial z_i}(\frac{e^{z_j}}{\sum_k e^{z_k}})
\\=\frac{0 \cdot \sum_k e^{z_k} - e^{z_j} \cdot e^{z_i}}{(\sum_k e^{z_k})^2}
\\=- \frac{e^{z_j}}{\sum_k e^{z_k}} \cdot \frac{e^{z_i}}{\sum_k e^{z_k}}
\\=-a_j \cdot a_i
\tag{6} $$

将(6)式带入(4)中,得到$ \frac{\partial Loss}{\partial w_{j}} = -\frac{1}{a_j} \cdot -a_j \cdot a_i = a_i$。

OK,到此我们已经完全推导完Softmax部分的反向传播。

参考:

1. https://zhuanlan.zhihu.com/p/25723112

2. https://blog.csdn.net/u014313009/article/details/51045303

Deep Learning基础--Softmax求导过程的更多相关文章

  1. softmax 损失函数求导过程

    前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个qu ...

  2. 【转载】softmax的log似然代价函数(求导过程)

    全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时, ...

  3. softmax求导、cross-entropy求导及label smoothing

    softmax求导 softmax层的输出为 其中,表示第L层第j个神经元的输入,表示第L层第j个神经元的输出,e表示自然常数. 现在求对的导数, 如果j=i,   1 如果ji, 2 cross-e ...

  4. Deep Learning基础--CNN的反向求导及练习

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  5. Deep Learning基础--理解LSTM/RNN中的Attention机制

    导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对 ...

  6. Deep Learning基础--参数优化方法

    1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...

  7. 【机器学习】BP & softmax求导

    目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向     根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0) ...

  8. Deep Learning基础--各个损失函数的总结与比较

    损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验 ...

  9. Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导

    1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...

随机推荐

  1. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  2. JAVA中的堆、栈等内存分析

    在 JAVA 中,有六个不同的地方可以存储数据 1. 寄存器( register ) 这是最快的存储区,因为它位于不同于其他存储区的地方——处理器内部.但是寄存器的数量极其有限,所以寄存器由编译器根据 ...

  3. 【算法乱讲】BSGS

    Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...

  4. Win10如何搭建FTP服务器以实现快速传输文件

    原文链接地址:http://blog.csdn.net/bai_langtao/article/details/77751447 Win10如何搭建FTP服务器以实现快速传输文件?相信大家在工作或生活 ...

  5. BZOJ3771 Triple 【NTT + 容斥】

    题目链接 BZOJ3771 题解 做水题放松一下 先构造\(A_i\)为\(x\)指数的生成函数\(A(x)\) 再构造\(2A_i\)为指数的生成函数\(B(x)\) 再构造\(3A_i\)为指数的 ...

  6. ZJOI2012网络 题解报告【LCT】

    题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环,同色的环指相同颜色的边构成的环. 在这 ...

  7. Linux分析第六周——进程的描述和进程的创建

    Linux分析第六周--进程的描述和进程的创建 李雪琦+原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/US ...

  8. 2017-2018-2 20165218 实验四《Android开发基础》实验报告

    实验三 Android开发基础 课程:java程序设计 姓名:赵冰雨 学号:20165218 指导教师:娄嘉鹏 实验日期:2018.4.14 实验内容: 1.基于Android Studio开发简单的 ...

  9. laravel5.1 eloquent with 通过闭包筛选特定 field 得不到结果的问题

    (图片有点大,可右键新tab查看) User模型 class User extends Model { public function profile() { return $this->has ...

  10. Rabbitmq -- direct

    一.前言 RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange.direct类型的Exchange路由规则也很简单,它会把消息路由到那些bindi ...