题目传送门

满汉全席

题目描述

满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中。由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家认证的满汉全席,也是中国厨师最大的荣誉之一。世界满汉全席协会是由能够料理满汉全席的专家厨师们所组成,而他们之间还细分为许多不同等级的厨师。

为了招收新进的厨师进入世界满汉全席协会,将于近日举办满汉全席大赛,协会派遣许多会员当作评审员,为的就是要在參赛的厨师之中,找到满汉料理界的明日之星。

大会的规则如下:每位參赛的选手可以得到n 种材料,选手可以自由选择用满式或是汉式料理将材料当成菜肴。

大会的评审制度是:共有m 位评审员分别把关。每一位评审员对于满汉全席有各自独特的見解,但基本见解是,要有兩样菜色作为满汉全席的标志。如某评审认为,如果没有汉式东坡肉跟满式的涮羊肉锅,就不能算是满汉全席。但避免过于有主見的审核,大会规定一个评审员除非是在认为必备的两样菜色都没有做出來的狀况下,才能淘汰一位选手,否则不能淘汰一位參赛者。

换句话說,只要參赛者能在这兩种材料的做法中,其中一个符合评审的喜好即可通过该评审的审查。如材料有猪肉,羊肉和牛肉时,有四位评审员的喜好如下表:

评审一 评审二 评审三 评审四
满式牛肉 满式猪肉 汉式牛肉 汉式牛肉
汉式猪肉 满式羊肉 汉式猪肉 满式羊肉

如參赛者甲做出满式猪肉,满式羊肉和满式牛肉料理,他将无法满足评审三的要求,无法通过评审。而參赛者乙做出汉式猪肉,满式羊肉和满式牛肉料理,就可以满足所有评审的要求。

但大会后來发现,在这样的制度下如果材料选择跟派出的评审员没有特别安排好的话,所有的參赛者最多只能通过部分评审员的审查而不是全部,所以可能会发生没有人通过考核的情形。

如有四个评审员喜好如下表时,则不论参赛者采取什么样的做法,都不可能通过所有评审的考核:

评审一 评审二 评审三 评审四
满式羊肉 满式猪肉 汉式羊肉 汉式羊肉
汉式猪肉 满式羊肉 汉式猪肉 满式猪肉

所以大会希望有人能写一个程序來判断,所选出的m 位评审,会不会发生 没有人能通过考核的窘境,以便协会组织合适的评审团。

输入输出格式

输入格式:

第一行包含一个数字 K,代表测试文件包含了K 组资料。

每一组测试资料的第一行包含兩个数字n 跟m(n≤100,m≤1000),代表有n 种材料,m 位评审员。

为方便起見,材料舍弃中文名称而给予编号,编号分别从1 到n。

接下來的m 行,每行都代表对应的评审员所拥有的兩个喜好,每个喜好由一个英文字母跟一个数字代表,如m1 代表这个评审喜欢第1 个材料透过满式料理做出來的菜,而h2 代表这个评审员喜欢第2 个材料透过汉式料理做出來的菜。

每个测试文件不会有超过50 组测试资料

输出格式:

每笔测试资料输出一行,如果不会发生没有人能通过考核的窘境,输出GOOD;否则输出BAD(大写字母)。

输入输出样例

输入样例#1:

2
3 4
m3 h1
m1 m2
h1 h3
h3 m2
2 4
h1 m2
m2 m1
h1 h2
m1 h2
输出样例#1:

GOOD
BAD

  分析:

  $2-SAT$的裸题,以前没学过$2-SAT$,今天讲课讲到了,就来做一下。

  对于每一种食材,我们知道要么做汉式,要么做满式,做了汉式就不能做满式,做了满式就不能做汉式,那么就把一个点拆成四个,分别表示四种状态,然后跑$Tarjan$判断就行了。

  Code:

  

//It is made by HolseLee on 20th Aug 2018
//Luogu.org P4171
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<stack>
#define Max(a,b) (a)>(b)?(a):(b)
#define Min(a,b) (a)<(b)?(a):(b)
using namespace std; const int N=;
const int M=;
int T,n,m,head[N],cnt,dfn[N],low[N],idx,scc[N],tot;
bool vis[N];
struct Node{
int to,nxt;
}edge[M];
stack<int>sta; inline int read()
{
char ch=getchar();int num=;
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){
num=(num<<)+(num<<)+(ch^);ch=getchar();
}
return num;
} inline void input(int &ka)
{
ka=;
char ch;
while(ch=getchar(),ch!='h'&&ch!='m');
ka=read();
ka=(ka-)*;
if(ch=='m')ka|=;
} inline void add(int x,int y)
{
edge[++cnt]=(Node){y,head[x]};
head[x]=cnt;
} void tarjan(int u)
{
dfn[u]=low[u]=++idx;
sta.push(u);vis[u]=true;
int v;
for(int i=head[u];i;i=edge[i].nxt){
v=edge[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=Min(low[u],low[v]);
}else if(vis[v]){
low[u]=Min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u]){
tot++;
do{
v=sta.top();sta.pop();
vis[v]=false;scc[v]=tot;
}while(v!=u);
}
} int main()
{
T=read();
while(T--){
n=read();m=read();
n<<=;
idx=cnt=tot=;
for(int i=;i<(n<<);++i)
head[i]=dfn[i]=low[i]=;
int x,y;
for(int i=;i<m;++i){
input(x);input(y);
add(x+n,y);add(y+n,x);
}
for(int i=;i<n;++i){
add(i+n,i^);
add(i^,i+n);
}
for(int i=;i<(n<<);++i)
if(!dfn[i])tarjan(i);
bool flag=true;
for(int i=;i<n;++i)
if(scc[i]==scc[i+n]||scc[i]==scc[i^]){
flag=false;break;
}
if(flag)printf("GOOD\n");
else printf("BAD\n");
}
return ;
}

洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]的更多相关文章

  1. 洛谷 P4171 [JSOI2010]满汉全席 解题报告

    P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...

  2. [洛谷P4171][JSOI2010]满汉全席

    题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问 题解:$2-SAT$,感觉是板子题呀,最后判 ...

  3. 洛谷 P4171 [JSOI]满汉全席

    洛谷 最近刚刚学的2-sat,就刷了这道裸题. 2-sat问题一般是用tarjan求的,当出现(x,y)或(!x,y)或(x,!y)三种选择时,我们可以把!x->y,!y->x连边. 然后 ...

  4. 洛谷 P2194 HXY烧情侣【Tarjan缩点】 分析+题解代码

    洛谷 P2194 HXY烧情侣[Tarjan缩点] 分析+题解代码 题目描述: 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里 ...

  5. 洛谷1726 上白泽慧音 tarjan模板

    题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间 ...

  6. 【洛谷5008】逛庭院(Tarjan,贪心)

    [洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现 ...

  7. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  8. 洛谷3388 【模板】割点 tarjan算法

    题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articul ...

  9. 题解 洛谷 P4171 【[JSOI2010]满汉全席】

    考虑\(2-SAT\). 将汉式看作\(0\)状态,满式看做\(1\)状态,将每个材料拆成\(01\)两个状态. 从\(a\)向\(b\)连有向边表示的意义为选了\(a\)后必须选\(b\). 那么每 ...

随机推荐

  1. 2015年IPC网络摄像机技术发展现状分析

    网络摄像机将图像转换为基于TCP/IP网络标准的数据包,使摄像机所摄的画面通过RJ-45以太网接口或WIFI WLAN无线接口直接传送到网络上,通过网络即可远端监视画面. 一.网络摄像机的基本原理 网 ...

  2. Excel 报表导入导出

    使用 Excel 进行报表的导入导出,首先下载相关的 jar 和 excel util. Excel Util 下载地址 引入依赖: <!-- poi office --> <dep ...

  3. web启动@Autowired不能自动注入

    使用struts2,下面为action代码 Java代码 package com.edar.web.platform; import org.apache.struts2.convention.ann ...

  4. python列表排序方法reverse、sort、sorted

    python语言中的列表排序方法有三个:reverse反转/倒序排序.sort正序排序.sorted可以获取排序后的列表.在更高级列表排序中,后两中方法还可以加入条件参数进行排序. reverse() ...

  5. Anagrams by Stack(深度优先搜索)

    ZOJ Problem Set - 1004 Anagrams by Stack Time Limit: 2 Seconds      Memory Limit: 65536 KB How can a ...

  6. 重构改善既有代码设计--重构手法19:Replace Data Value with Object (以对象取代数据值)

    你有一笔数据项(data item),需要额外的数据和行为. 将这笔数据项变成一个对象. class Order... private string customer; ==> class Or ...

  7. GridControl详解(一)原汁原味的表格展示

    Dev控件中的表格控件GridControl控件非常强大.不过,一些细枝末节的地方有时候用起来不好找挺讨厌的.使用过程中,多半借助Demo和英文帮助文档.网上具体的使用方法也多半零碎.偶遇一个简单而且 ...

  8. K. Random Numbers(Gym 101466K + 线段树 + dfs序 + 快速幂 + 唯一分解)

    题目链接:http://codeforces.com/gym/101466/problem/K 题目: 题意: 给你一棵有n个节点的树,根节点始终为0,有两种操作: 1.RAND:查询以u为根节点的子 ...

  9. VC孙鑫老师第八课:你能捉到我吗?

    第一步,首先在对话框窗口上放上两个一模一样的按钮控件 第二步,由于是按钮响应鼠标移动上去的事件,因此需要重新派生按钮类: 第三步,在窗口类中声明并使用自定义按钮对象(记得在窗口类中包含自定义按钮类的头 ...

  10. arch点击硬盘无法挂载

    出现问题如下 在使用xfce4桌面的时候在点击硬盘图标时可以挂载虽然要求你输入root密码 但是在使用openbox的时候点击硬盘图标却出现如下提示,权限的问题 Not authorized to p ...