题面

有多组数据:Poj

无多组数据:洛谷

题解

点分治板子题,$calc$的时候搞一个$two\ pointers$扫一下统计答案就行了。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 1e4 + 10, Inf = 1e9 + 7;
int n, k, d[N], Size;
int cnt, from[N], to[N << 1], nxt[N << 1], dis[N << 1];
int p, siz[N], tmp; bool vis[N];
inline void addEdge(int u, int v, int w) {
to[++cnt] = v, nxt[cnt] = from[u], dis[cnt] = w, from[u] = cnt;
} void getrt(int u, int f) {
siz[u] = 1; int max_part = 0;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(v == f || vis[v]) continue;
getrt(v, u), siz[u] += siz[v];
max_part = max(max_part, siz[v]);
} max_part = max(max_part, Size - siz[u]);
if(max_part < tmp) tmp = max_part, p = u;
} void getpoi(int x, int y, int f) {
d[++tmp] = y;
for(int i = from[x]; i; i = nxt[i]) {
int v = to[i]; if(v == f || vis[v]) continue;
getpoi(v, y + dis[i], x);
}
} int calc (int x, int y) {
tmp = 0, getpoi(x, y, 0);
sort(&d[1], &d[tmp + 1]);
int j = tmp, ret = 0;
for(int i = 1; i < j; ++i) {
while(d[i] + d[j] > k && i < j) --j;
ret += j - i;
} return ret;
} int doit(int x) {
int ret = 0;
tmp = Inf, getrt(x, 0), vis[p] = true;
ret += calc(p, 0);
for(int i = from[p]; i; i = nxt[i]) {
int v = to[i]; if(vis[v]) continue;
ret -= calc(v, dis[i]), Size = siz[v], ret += doit(v);
} return ret;
} int main () {
while(1) {
read(n), read(k); if(!n && !k) break;
Size = n, cnt = 0, memset(from, 0, sizeof from);
memset(vis, 0, sizeof vis);
for(int i = 1, u, v, w; i < n; ++i) {
read(u), read(v), read(w);
addEdge(u, v, w), addEdge(v, u, w);
}
printf("%d\n", doit(1));
}
return 0;
}

Poj1741/洛谷P4718 Tree(点分治)的更多相关文章

  1. 洛谷P4178 Tree (点分治)

    题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式:   N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下 ...

  2. 洛谷 4178 Tree——点分治

    题目:https://www.luogu.org/problemnew/show/P4178 点分治.如果把每次的 dis 和 K-dis 都离散化,用树状数组找,是O(n*logn*logn),会T ...

  3. [洛谷P4178] Tree (点分治模板)

    题目略了吧,就是一棵树上有多少个点对之间的距离 \(\leq k\) \(n \leq 40000\) 算法 首先有一个 \(O(n^2)\) 的做法,枚举每一个点为起点,\(dfs\) 一遍可知其它 ...

  4. 洛谷 P4178 Tree —— 点分治

    题目:https://www.luogu.org/problemnew/show/P4178 这道题要把 dep( dis? ) 加入一个 tmp 数组里,排序,计算点对,复杂度很美: 没有写 sor ...

  5. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  6. 洛谷P3810 陌上花开 CDQ分治(三维偏序)

    好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...

  7. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

  8. POJ1471 Tree/洛谷P4178 Tree

    Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...

  9. 2018.07.20 洛谷P4178 Tree(点分治)

    传送门 又一道点分治. 直接维护子树内到根的所有路径长度,然后排序+双指针统计答案. 代码如下: #include<bits/stdc++.h> #define N 40005 using ...

随机推荐

  1. codeblocks 设置代码自动补全

    熟悉使用一些开发类IDE的朋友对代码自动补全一定印象深刻,如Visual studio,eclipse等,我们在程序中定义的那一个个超长的变量函数名只需打出几个字母就可自动补全,但是在codebloc ...

  2. HDU 1211 EXGCD

    EXGCD的模板水题 RSA算法给你两个大素数p,q定义n=pq,F(n)=(p-1)(q-1) 找一个数e 使得(e⊥F(n)) 实际题目会给你e,p,q计算d,$de \mod F(n) = 1$ ...

  3. linux 中 permission denied的问题

    想在linux中运行一个脚步,却提示permission denied. 文件权限不允许. 为了获得执行权限,借助chmod指令修改文件权限即可. 1.如果是运行程序时出现此提示,一般执行chmod ...

  4. jQuery各版本CDN

    jquery-2.1.1 注:jquery-2.0以上版本不再支持IE 6/7/8)百度引用地址 (推荐目前最稳定的,不会出现延时打不开情况) 百度压缩版引用地址:<script src=”ht ...

  5. winform MDI子窗口闪动问题(本人测试100%有效解决闪屏问题)

    将下面的代码随便放到主窗体的任何一个地方 protected override CreateParams CreateParams //解决MDI闪屏 { get { CreateParams cp ...

  6. 无废话JavaScript(下)

    五.函数式 这个可不是JavaScript的发明,它的发明人已经死了,而他的这个发明还在困扰着我们……如同爱迪生的灯泡还在照耀着我们. 其实函数式语言很简单,它就是一种与命令式语言同样“完备”的语言实 ...

  7. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  8. 解决 IE7 中 display:inline-block 失效的问题

    我们在做首页菜单选项的时候,通常会用 li 标签去做,通过对 li 标签设置样式: display:inline-block 可以让 li 标签横排显示.但是这样做,在 IE7 浏览器下面会有一个兼容 ...

  9. git常用命令速查表【转】

  10. SQL 变量 条件查询 插入数据

    (本文只是总结网络上的教程) 在操作数据库时 SQL语句中难免会用到变量 比如 在條件值已知的情況下 INSERT INTO table_name (列1, 列2,...) VALUES (值1, 值 ...