ACM -- 算法小结(十)素数的两种打表法
- 素数的两种打表法
下面介绍两种素数打表法,由于是两年前留下的笔记,所以没有原创链接~~ @_@!!
第一种疯狂打表法:
#include<stdio.h>
#include<math.h> #define N 100000 int a[N];
int s1[]; int main()
{
int i,j,k,n; for(i=;i<=N;i++)//初始化表一
a[i]=; n=(int)sqrt(N);//注意n!!!
for(i=;i<=n;i++)//表一进行打表
{
for(j=i+i;j<=N;j+=i)//素数的倍数不是素数原理
a[j]=;
} k=;
for(i=;i<=N;i++)//将表一的素数存入表二,打表完成
if(a[i])
{
s1[k]=i;
k++;
} for(i=;i<k;i++)
printf("%d\t",s1[i]); return ;
}
第二种打表法,相对第一种省内存,但是相对较费时间
/*1.首先素数先排除2和3的倍数*/
/*2.对6*n-1和6*n+1进行判断是否素数判断过程为3.*/
/*3.将当前6*n-1和6*n+1对素数表s[]中的前1~sqrt(le)+1 个数进行mod运算,都不能mod尽的为素数,并存表*/
/*重复2.和 3.的步骤直到循环结束*/ #include<stdio.h>
#include<math.h>
#define N 1000 int s[N]; int main()
{
int i,j,ls,n;
int a,b,sign1,sign2; s[]=;//步骤1
s[]=;
ls=;
for(i=;i<N;i=i+)//步骤2
{
a=i-;
b=i+;
sign1=;
sign2=;
n=(int)sqrt(ls);
for(j=;j<=n+;j++)//步骤3.
{
if(a%s[j]==)
{
sign1=;
break;
}
} for(j=;j<=n+;j++)
{
if(b%s[j]==)
{
sign2=;
break;
}
} if(sign1)//素数存表
{
ls+=;
s[ls]=a;
}
if(sign2)
{
ls+=;
s[ls]=b;
} } for(i=;i<=ls;i++)
printf(" %d\t",s[i]);
return ;
}
附录:1-10000以内的素数表
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481 6491 6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393 7411 7417 7433 7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 8117 8123 8147 8161 8167 8171 8179 8191 8209 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387 8389 8419 8423 8429 8431 8443 8447 8461 8467 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 8693 8699 8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831 8837 8839 8849 8861 8863 8867 8887 8893 8923 8929 8933 8941 8951 8963 8969 8971 8999 9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 9091 9103 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187 9199 9203 9209 9221 9227 9239 9241 9257 9277 9281 9283 9293 9311 9319 9323 9337 9341 9343 9349 9371 9377 9391 9397 9403 9413 9419 9421 9431 9433 9437 9439 9461 9463 9467 9473 9479 9491 9497 9511 9521 9533 9539 9547 9551 9587 9601 9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689 9697 9719 9721 9733 9739 9743 9749 9767 9769 9781 9787 9791 9803 9811 9817 9829 9833 9839 9851 9857 9859 9871 9883 9887 9901 9907 9923 9929 9931 9941 9949 9967 9973
ACM -- 算法小结(十)素数的两种打表法的更多相关文章
- JavaWeb学习 (二十)————JavaWeb的两种开发模式
一.JSP+JavaBean开发模式 1.1.jsp+javabean开发模式架构 jsp+javabean开发模式的架构图如下图(图1-1)所示
- Redis(十二):redis两种持久化方法对比分析
前言 最近在项目中使用到Redis做缓存,方便多个业务进程之间共享数据.由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数 ...
- RGB2GRAY 各种算法速度比较,整形乘法比查表法快!
1. 查表法,外循环用 这种格式 : //for(int j = 0; j != h; ++j)// for(int i = 0; i!=w;++i)//. for(int j = 0; j != ...
- ACM -- 算法小结(二)错排公式的应用
pala提出的问题: 十本不同的书放在书架上.现重新摆放,使每本书都不在原来放的位置.有几种摆法? 这个问题推广一下,就是错排问题: n个有序的元素应有n!种不同的排列.如若一个排列式的所有的元素都 ...
- ACM -- 算法小结(八)字符串算法之Manacher算法
字符串算法 -- Manacher算法 首先介绍基础入门知识,以下这部分来着一贴吧,由于是很久之前看的,最近才整理一下,发现没有保存链接,请原创楼主见谅. //首先:大家都知道什么叫回文串吧,这个算法 ...
- ACM -- 算法小结(六)逆波兰表达式
逆波兰表达式 //问题描述:逆波兰表达式是一种把运算符前置的算术表达式,例如普通的表达式2+3的 //逆波兰表达式法为+ 2 3.逆波兰表达式的优点是运算符之间不必有优先级关系,也不必 //用括号改 ...
- ACM -- 算法小结(五)字符串算法之Sunday算法
1. Sunday算法是Daniel M.Sunday于1990年提出的一种比BM算法搜索速度更快的算法. 2. Sunday算法其实思想跟BM算法很相似,只不过Sunday算法是从前往后匹配, 在匹 ...
- 『Python CoolBook』数据结构和算法_多变量赋值&“*”的两种用法
多变量赋值 a = [1,2,(3,4)] b,c,d = a print(b,c,d) b,c,(d,e) = a print(b,c,d,e) 1 2 (3, 4) 1 2 3 4 a = &qu ...
- ACM -- 算法小结(九)DP之Humble numbers
DP -- Humble numbers //一开始理解错题意了,题意是是说一些只有唯一一个质因数(质因数只包括2,3,5,7)组成的数组,请找出第n个数是多少 //无疑,先打表,否则果断 ...
随机推荐
- Flask 的一个小应用程序
传说这是Flask 的最小应用程序:hello.py from flask import Flask app = Flask(__name__) @app.route('/') def hello_w ...
- python 实现字符串转整型
def str2Int(s): l=list(s) if len(l)<=0: return 0 flag=0 sum=0 dict_num={':9} dict_tag={'+':1,'-': ...
- NASA: SpaceX的猎鹰9号火箭将龙飞船发射到国际空间站
At 5:42 a.m. EDT Friday, June 29, 2018, SpaceX’s Dragon spacecraft lifts off on a Falcon 9 rocket fr ...
- Android检测富文本中的<img标签并实现点击效果
本文旨在:通过点击一张图片Toast输出位置与url链接. 闲话少说,实现原理大概是酱紫的::通过正则表达式检测富文本内的图片集合并获取url,在src=“xxx” 后面添加 onclick方法,至于 ...
- java基础14 多态(及关键字:instanceof)
面向对象的三大特征: 1.封装 (将一类属性封装起来,并提供set()和get()方法给其他对象设置和获取值.或者是将一个运算方法封装起来,其他对象需要此种做运算时,给此对象调用) 2.继承 ...
- socket编程——sockaddr_in结构体操作
sockaddr结构体 sockaddr的缺陷: struct sockaddr 是一个通用地址结构,这是为了统一地址结构的表示方法,统一接口函数,使不同的地址结构可以被bind() , connec ...
- HDU 2544 最短路(floyd+bellman-ford+spfa+dijkstra队列优化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找点1到点n的最短路(无向图) 练一下最短路... dijkstra+队列优化: #i ...
- beego学习笔记(4):开发文档阅读(1)
1.beego的设计是高度模块化的.每个模块,都可以单独使用.一共八大模块: cache;session;log;orm;context;httplibs;toolbox 2.beego的执行逻辑 3 ...
- (转载)Linux入门:操作目录和文件的命令
PATH 每个用户的PATH都是不一样的: PATH中不包含“当前目录”: (1)echo $PATH:显示PATH环境变量: (2)PATH = "$PATH":/home/ ...
- TEC-2几条微指令的微码说明 & TEC-2微程序运行测试步骤
个人理解,不保证完全正确…… 给正在被何朝东虐的,以及将来会被何朝东虐的同胞们………… 祈祷软院赶快更新课程让下一代逃脱TEC-2魔爪,monitor里那1994的年份真是看得人一口老血…… 微码说明 ...