hdu1568&&hdu3117 求斐波那契数前四位和后四位
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568
题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案
斐波那契数列通式:
当n<=20的时候,不足四位,所以直接打表。
当n>20的时候,大于四位的时候,ans满足这个公式:ans=-0.5*log10(5.0)+num*1.0*log10((1+sqrt(5.0))/2.0);
这个公式是怎么来的呢?我们可以对an取10的对数,根据对数的性质。
log10(ans)=log10(1/sqrt(5))+log10(((1+sqrt(5))/2)^num-((1-sqrt(5))/2)^num))
log10(ans)=0-0.5*log10(5.0)+log10(((1+sqrt(5))/2)^num-((1-sqrt(5))/2)^num)),当num趋于无穷的的时候 。
lim((1-sqrt(5))/2)^num)=0
log10(ans)=0-0.5*log10(5.0)+log10(((1+sqrt(5))/2)^num)= -0.5*log10(5.0)+num*1.0*log10( (1+sqrt(5))/2),我们就得到了上文的公式。
这里说一下原理,x=123456789,那么y=log10(x)=1.23456789,这个时候将y*=1000,就得到了 y=1234.56789,求幂次和取对数互为逆运算,通过这个原理我们可以求前x的长度。
//Author: xiaowuga
#include <bits/stdc++.h>
#define maxx INT_MAX
#define minn INT_MIN
#define inf 0x3f3f3f3f
#define maxn
using namespace std;
typedef long long ll;
ll table[];
int main() {
ios::sync_with_stdio(false);cin.tie();
table[]=;table[]=;
for(int i=;i<=;i++) table[i]=table[i-]+table[i-];
ll num;
while(cin>>num){
if(num<=) cout<<table[num]<<endl;
else{
double ans=-0.5*log10(5.0)+num*1.0*log10((+sqrt(5.0))/2.0);
ans=ans-(ll)ans;
double a=pow(10.0,ans);
a=*a;
cout<<(ll)a<<endl;
}
}
return ;
}
hdu3117:Fibonacci Numbers
这道题求斐波那契的数列的前四位和后四位,前四位和1568是一样的,后四位只需要把mod变成10000就行了,比较简单,直接看代码吧!!
//Author: xiaowuga
#include <bits/stdc++.h>
#define maxx INT_MAX
#define minn INT_MIN
#define inf 0x3f3f3f3f
#define n 2
#define MOD 10000
using namespace std;
typedef long long ll;
ll table[];
ll first_four(ll num){
double ans=-0.5*log10(5.0)+num*1.0*log10((+sqrt(5.0))/2.0);
ans=ans-(ll)ans;
double a=pow(10.0,ans);
a=*a;
return (ll)a;
}
struct Matrix{
ll mat[][];
Matrix operator * (const Matrix & m) const{
Matrix tmp;
for(int i=;i<n;i++)
for(int j=;j<n;j++){
tmp.mat[i][j]=;
for(int k=;k<n;k++){
tmp.mat[i][j]+=mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j]%=MOD;
}
}
return tmp;
}
};
Matrix POW(Matrix &m,ll k){
Matrix ans;
memset(ans.mat,,sizeof(ans.mat));
for(int i=;i<n;i++) ans.mat[i][i]=;
while(k){
if(k&) ans=ans*m;
k/=;
m=m*m;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
table[]=;table[]=;
for(int i=;i<=;i++) table[i]=table[i-]+table[i-];
ll num;
while(cin>>num){
if(num<=) cout<<table[num]<<endl;
else{
cout<<first_four(num)<<"...";
Matrix m;
memset(m.mat,,sizeof(m.mat));
m.mat[][]=m.mat[][]=m.mat[][]=;m.mat[][]=;
Matrix ans=POW(m,num-);
cout.fill('');
cout.width();
cout<<ans.mat[][]%MOD<<endl;
}
}
return ;
}
hdu1568&&hdu3117 求斐波那契数前四位和后四位的更多相关文章
- C++求斐波那契数
题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...
- POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...
- HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】
Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- 求斐波那契数的python语言实现---递归和迭代
迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 ...
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...
- Python - 求斐波那契数列前N项之和
n = int(input("Input N: ")) a = 0 b = 1 sum = 0 for i in range(n): sum += a a, b = b, a + ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质
E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...
- 用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧. 本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...
随机推荐
- gdb前端: VIM+Pyclewn 调试C/C++
(gdb) mapkeys C-B : break "${fname}":${lnum} # set breakpoint at current line C-D : down C ...
- cocos2d-x与ISO内存管理(转)
一,IOS与图片内存 在IOS上,图片会被自动缩放到2的N次方大小.比如一张1024*1025的图片,占用的内存与一张1024*2048的图片是一致的.图片占用内存大小的计算的公式是:长*宽*4.这样 ...
- Ubuntu环境下使用npm安装node模块时报错的处理方法
错误信息: npm ERR : node: not found : npm ERR! not ok code 0 解决方案: sudo apt-get install nodejs-legacy 也可 ...
- 1、Reactive Extensions for .NET(译)
注:本文的工程是基于 vs2010 的,在 vs2012 中区别不大. 本文的意图是让读者熟悉 Reactive Extension for .net(Rx) 的使用.通过一系列的例子,让读者感受 基 ...
- Spring Cloud重试机制与各组件的重试总结
SpringCloud重试机制配置 首先声明一点,这里的重试并不是报错以后的重试,而是负载均衡客户端发现远程请求实例不可到达后,去重试其他实例. ? 1 2 3 4 5 6 7 8 @Bean @Lo ...
- CSS学习笔记(7)--html页面的CSS、DIV命名规则
html页面的CSS.DIV命名规则 CSS命名规则 头:header 内容:content/containe 尾:footer 导航:nav 侧栏:sidebar 栏目:column 页面外围控制整 ...
- Android不同版本下Notification创建方法
项目环境 Project Build Target:Android 6.0 问题: 使用 new Notification(int icon, CharSequence tickerText, lon ...
- 【noip模拟题】挖掘机(模拟题+精度)
这题直接模拟. 可是我挂在了最后两个点上QAQ.唯一注意的是注意精度啊...用来double后边转成整数就忘记用longlong...sad #include <cstdio> #incl ...
- HTML5+Canvas+jQuery调用手机拍照功能实现图片上传(二)
上一篇仅仅讲到前台操作,这篇专门涉及到Java后台处理.前台通过Ajax提交将Base64编码过的图片数据信息传到Java后台,然后Java这边进行接收处理.通过对图片数据信息进行Base64解码,之 ...
- ubuntu16.04 安装 eclipse
1. 下载jdk , jdk-8u77-Linux-x64.tar.gz 2.下载 eclipse , eclipse-jee-mars-2-linux-gtk-x86_64.tar.gz 注:我下 ...