http://www.lydsy.com/JudgeOnline/problem.php?id=1101

无限膜拜数论和分块orz

首先莫比乌斯函数的一些性质可以看《初等数论》或《具体数学》或贾志鹏的《线性筛法和积性函数》

我写一些笔记啥的吧。。

首先莫比乌斯函数的定义及一些性质(免去证明):

$$
\mu (n) =
\begin{cases}
1 & n=1\\
(-1)^k & n=p_1p_2 \cdots p_k,质因子指数均为1且互不相同 \\
0 & 其余情况\\
\end{cases}
$$

按照定义线性筛的话很容易预处理出来,我就不阐述了。

然后是性质:

$$ \sum_{d|n} \mu (d) = [n=1]$$

反演的话暂时还没学orz

然后本题要求

$$\sum_{1<=x<=a} \sum_{1<=y<=b} [(x, y)=d]$$

那么我们化简,首先根据$(a, b)=x \Leftrightarrow (da, db)=dx$,那么本题就是要求

$$\sum_{1<=x<=a'} \sum_{1<=y<=b'} [(x, y)=1],其中a'=a/d, b'=b/d$$

继续化简,根据$\sum_{d|n} \mu (d) = [n=1]$

$$\sum_{1<=x<=a'} \sum_{1<=y<=b'} \sum_{d|(x, y)} \mu (d)$$

将和式提前且根据$a|(x, y) \Leftrightarrow a|x, a|y$,有

$$\sum_{1<=d<=min\{a', b'\}} \mu (d) \sum_{1<=x<=a'且d|x} \sum_{1<=y<=b'且d|y} 1$$

可以看出原式为:

$$\sum_{1<=d<=min\{a', b'\}} \mu (d) \lfloor \frac{a'}{d} \rfloor \times \lfloor \frac{b'}{d} \rfloor$$

而我们发现,$\lfloor \frac{a'}{d} \rfloor$只有$2\sqrt{a'}$种(即有那么多个商),b'同理,因此我们可以分块!

每一次计算同一个商的所有数。而因为是和式,我们可以维护个前缀和变成乘法!

而计算出当前商的下一个商很巧妙!

pos=min(a'/(a'/now), b'/(b'/now)),是当前除数,pos是当前商的最后一个除数,pos+1则是下一个除数(使得不同于现在的商)!

//其实不就是$\lfloor \frac{a'}{now} \rfloor = \lfloor \frac{a'}{pos} \rfloor$么。。

因为n/now得出当前商后,再除n,可以得到所有商为n/now的数的最后一个数,,,,,,很简单的小学题QAQorz

于是问题解决了

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next) const int N=50015;
int mu[N], p[N], np[N], cnt, sum[N];
void init() {
mu[1]=1;
for(int i=2; i<N; ++i) {
if(!np[i]) p[++cnt]=i, mu[i]=-1;
for(int j=1; j<=cnt && i*p[j]<N; ++j) {
int t=i*p[j];
np[t]=1;
if(i%p[j]==0) { mu[t]=0; break; }
mu[t]=-mu[i];
}
}
for(int i=1; i<N; ++i) sum[i]=sum[i-1]+mu[i];
} int main() {
int a, b, d, n=getint();
init();
while(n--) {
read(a); read(b); read(d);
a/=d, b/=d;
int l=min(a, b), pos;
ll ans=0;
for(int i=1; i<=l; i=pos+1) {
pos=min(a/(a/i), b/(b/i));
ans+=(ll)(sum[pos]-sum[i-1])*(a/i)*(b/i);
}
printf("%lld\n", ans);
}
return 0;
}

  


Description

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2

HINT

对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。

Source

 

【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)的更多相关文章

  1. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  2. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  3. BZOJ 1101: [POI2007]Zap

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status] ...

  4. BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...

  5. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  6. BZOJ 1101 [POI2007]Zap ——Dirichlet积

    [题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以 ...

  7. bzoj 1101 [POI2007]Zap——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 #include<cstdio> #include<cstring& ...

  8. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  9. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

随机推荐

  1. web前端开发文档

  2. vue 1.x 总结

    1.Vuejs组件 vuejs构建组件使用 Vue.component('componentName',{ /*component*/ }): 这里注意一点,组件要先注册再使用,也就是说: Vue.c ...

  3. 【Django】pip 安装和卸载 Django

    1.在dos命令中输入pip进行安装 注意:如果提示('pip' 不是内部或外部命令,也不是可运行的程序或批处理文件.) 那么先将pip添加到环境变量中,pip路径一般在python的安装路径下,例如 ...

  4. llinux环境变量查看和修改

    查看全局环境变量:env 查看所有环境变量:set 删除一个变量:unset [变量名] #只针对当前会话 设置一个变量:name=songjiankang export name #将这个变量提升为 ...

  5. PHP-"php://(类型)"访问各个输入/输出流以及全局变量$HTTP_RAW_POST_DATA讲解

    $_POST $HTTP_RAW_POST_DATA php://input 先来讲以上三者的区别: $_POST:以关联数组方式组织提交的数据, 并对原数据进行编码处理(urldecode)和编码转 ...

  6. python --curl重定向到文件范例

      import sys import os import subprocess import time start = time.time() old=sys.stdout f=open('test ...

  7. Sublime Text 使用指南 - 前端开发神器

    Sublime Text 前端开发的神器 Sublime Text是一个前端开发者必备的编辑器,大量的插件,完善的功能,优越的性能,有非常多的特色,给前端开发提供了一个完善的开发条件. 本文主要介绍的 ...

  8. MySQL主从不一致情形与解决方法

    参考:https://blog.csdn.net/hardworking0323/article/details/81046408 https://blog.csdn.net/lijingkuan/a ...

  9. Rigidbody-ClosestPointOnBounds测试

    可见是Collider的Bounds

  10. Android 线性布局(LinearLayout)相关官方文档 - 布局參数部分

    Android 线性布局(LinearLayout)相关官方文档 - 布局參数部分 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商 ...