VJ传送门

简要题意:给出两个大小均为\(N\)的点集\(A,B\),试在\(A\)中选择一个点,在\(B\)中选择一个点,使得它们在所有可能的选择方案中欧几里得距离最小,求出这个距离


下面给出的两种解法基本上都能够被卡成\(O(n^2)\)……

按照平面最近点对的做法去做,只是在贡献答案的时候加上所属点集不同的限制就可以了。

当然这个可以卡,只要把\(A\)、\(B\)集合之间分得很开,而\(A\)集合和\(B\)集合内部的点两两之间的距离很小,这样在分治下去的过程中没法贡献答案,最后在分治的第一层就有可能会退化成\(O(n^2)\)

如果你愿意可以旋转坐标系来部分解决上面的问题

代码没有写

K-D Tree

把\(A\)集合的点全部加进去构建K-D Tree,对于\(B\)集合内的每个点在K-D Tree上搜索,加个最优化剪枝。

这个怎么卡应该不需要说了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
#define ld long double
#define int long long
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c) && c != EOF){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    if(c == EOF)
        exit(0);
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return f ? -a : a;
}

const int MAXN = 1e5 + 7;
struct point{
    int x , y , ind;
    point(int _x = 0 , int _y = 0 , int _i = 0):x(_x) , y(_y) , ind(_i){}
}P[MAXN];
int N , rt;
int ch[MAXN][2] , X[MAXN][2] , Y[MAXN][2] , p[MAXN][2];
ld ans;

bool cmp1(point a , point b){
    return a.x == b.x ? a.y < b.y : a.x < b.x;
}

bool cmp2(point a , point b){
    return a.y == b.y ? a.x < b.x : a.y < b.y;
}

inline ld calc(point a , point b){
    return sqrt((long double)(a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

inline void merge(int x , int y){
    X[x][0] = min(X[x][0] , X[y][0]);
    X[x][1] = max(X[x][1] , X[y][1]);
    Y[x][0] = min(Y[x][0] , Y[y][0]);
    Y[x][1] = max(Y[x][1] , Y[y][1]);
}

int build(int l , int r , bool f){
    if(l > r)
        return 0;
    int mid = (l + r) >> 1;
    nth_element(P + l , P + mid , P + r + 1 , f ? cmp1 : cmp2);
    int t = P[mid].ind;
    X[t][0] = X[t][1] = P[mid].x;
    Y[t][0] = Y[t][1] = P[mid].y;
    if(ch[t][0] = build(l , mid - 1 , f ^ 1))
        merge(t , ch[t][0]);
    if(ch[t][1] = build(mid + 1 , r , f ^ 1))
        merge(t , ch[t][1]);
    return t;
}

inline ld qw(int x , point p){
    int mx = max(max(X[x][0] - p.x , p.x - X[x][1]) , 0ll) , my = max(max(Y[x][0] - p.y , p.y - Y[x][1]) , 0ll);
    return sqrt((long double)mx * mx + my * my);
}

void dfs(int x , point q , bool f){
    if(x == 0 || qw(x , q) > ans)
        return;
    ans = min(ans , calc(point(p[x][0] , p[x][1]) , q));
    if(f ? cmp1(point(p[x][0] , p[x][1]) , q) : cmp2(point(p[x][0] , p[x][1]) , q)){
        dfs(ch[x][1] , q , f ^ 1);
        dfs(ch[x][0] , q , f ^ 1);
    }
    else{
        dfs(ch[x][0] , q , f ^ 1);
        dfs(ch[x][1] , q , f ^ 1);
    }
}

signed main(){
#ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    freopen("out","w",stdout);
#endif
    for(int T = read() ; T ; --T){
        N = read();
        for(int i = 1 ; i <= N ; ++i){
            P[i].x = p[i][0] = read();
            P[i].y = p[i][1] = read();
            P[i].ind = i;
        }
        rt = build(1 , N , 0);
        ans = 1e50;
        for(int i = 1 ; i <= N ; ++i){
            P[0].x = read();
            P[0].y = read();
            dfs(rt , P[0] , 0);
        }
        cout << fixed << setprecision(3) << ans << endl;
    }
    return 0;
}

POJ3714 Raid 分治/K-D Tree的更多相关文章

  1. poj3714 Raid(分治求平面最近点对)

    题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...

  2. $Poj3714/AcWing\ Raid$ 分治/平面最近点对

    $AcWing$ $Sol$ 平面最近点对板子题,注意要求的是两种不同的点之间的距离. $Code$ #include<bits/stdc++.h> #define il inline # ...

  3. BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)

    BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...

  4. POJ3714 Raid

    Raid Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 10625   Accepted: 3192 Description ...

  5. POJ-3714 Raid 平面最近点对

    题目链接:http://poj.org/problem?id=3714 分治算法修改该为两个点集的情况就可以了,加一个标记... //STATUS:C++_AC_2094MS_4880KB #incl ...

  6. 洛谷P3806 点分治1 & POJ1741 Tree & CF161D Distance in Tree

    正解:点分治 解题报告: 传送门1! 传送门2! 传送门3! 点分治板子有点多,,,分开写题解的话就显得很空旷,不写又不太好毕竟初学还是要多写下题解便于理解 于是灵巧发挥压行选手习惯,开始压题解(bu ...

  7. 【点分治】bzoj1468 Tree

    同poj1741. 换了个更快的姿势,不会重复统计然后再减掉什么的啦~ #include<cstdio> #include<algorithm> #include<cst ...

  8. 【点分治】poj1741 Tree / poj2114 Boatherds / poj1987 Distance Statistics

    三道题都很类似.给出1741的代码 #include<cstdio> #include<algorithm> #include<cstring> using nam ...

  9. 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS

    原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...

随机推荐

  1. Linux Linux内核参数调优

    Linux内核参数调优 by:授客 QQ:1033553122 关于调优的建议: 1.出错时,可以查看操作系统日志,可能会找到一些有用的信息 2.尽量不要“批量”修改内核参数,笔者就曾这么干过,结果“ ...

  2. Java并发编程(六)volatile关键字解析

    由于volatile关键字是与Java的内存模型有关的,因此在讲述volatile关键之前,我们先来了解一下与内存模型相关的概念和知识. 一.内存模型的相关概念 Java内存模型规定所有的变量都是存在 ...

  3. IDEA插件清单

    zookeeper插件,方便查看zk节点信息 Maven Helper,方便解决jar包冲突 Free Mybatis plugin,自动映射mapper接口到对应查询statements gener ...

  4. python自动发送测试报告(五)

    python实现自动发送邮件具体步骤参考笔者的另一篇博文,python实现邮件的发送 本次只展示发送附件的代码,MIMEApplication支持常用格式文档(.jpg..mp3.zip等)当做附件上 ...

  5. 游标和递归sql 的一些代码

    DECLARE @UserID INT; --推广员帐号 DECLARE @ProxyID INT; --代理帐号 ; --分数 SELECT @UserID = [SpreaderID] FROM ...

  6. log4Net辅助类

    public class Log { private ILog logger; public Log(ILog log) { this.logger = log; } public void Debu ...

  7. Mac命令行使用tree查看目录结构

    默认tree命令是无法使用的,可以使用homebrew install tree安装. 如果直接使用tree,查看的目录里面含有中文字符的目录或文件时会出现汉字不能显示的问题,可以使用tree -N查 ...

  8. Activiti工作流的定义部署和执行

        工作流引擎 个人觉得直接理解工作流引擎概念有点难度,我们可以先通过了解工作流引擎的职责再反过来理解工作流引擎,工作流引擎一般都做两件事情: 1.定义流程,也就是给我们提供某种规范来定义规则,以 ...

  9. 【夯实PHP基础】微信小程序开发 2017.02.06

    本文地址 分享提纲 1. 概述 2. 简易教程 1. 概述 1)[小程序是什么] 微信小程序是一种全新的连接用户与服务的方式,它可以在微信内被便捷地获取和传播,同时具有出色的使用体验. 2)[快速体验 ...

  10. python流程控制语句-if语句

    一个if语句 if语句用来检验一个条件, 如果 条件为真,我们运行一块语句(称为 if-块 ),也就是只有一个if判断,当为真的时候就运行一块语句,否则就不运行 下面代码中的if语句控制者缩进的pri ...