545. Boundary of Binary Tree二叉树的边界
[抄题]:
Given a binary tree, return the values of its boundary in anti-clockwise direction starting from root. Boundary includes left boundary, leaves, and right boundary in order without duplicate nodes.
Left boundary is defined as the path from root to the left-most node. Right boundary is defined as the path from root to the right-most node. If the root doesn't have left subtree or right subtree, then the root itself is left boundary or right boundary. Note this definition only applies to the input binary tree, and not applies to any subtrees.
The left-most node is defined as a leaf node you could reach when you always firstly travel to the left subtree if exists. If not, travel to the right subtree. Repeat until you reach a leaf node.
The right-most node is also defined by the same way with left and right exchanged.
Example 1
Input:
1
\
2
/ \
3 4 Ouput:
[1, 3, 4, 2] Explanation:
The root doesn't have left subtree, so the root itself is left boundary.
The leaves are node 3 and 4.
The right boundary are node 1,2,4. Note the anti-clockwise direction means you should output reversed right boundary.
So order them in anti-clockwise without duplicates and we have [1,3,4,2].
Example 2
Input:
____1_____
/ \
2 3
/ \ /
4 5 6
/ \ / \
7 8 9 10 Ouput:
[1,2,4,7,8,9,10,6,3] Explanation:
The left boundary are node 1,2,4. (4 is the left-most node according to definition)
The leaves are node 4,7,8,9,10.
The right boundary are node 1,3,6,10. (10 is the right-most node).
So order them in anti-clockwise without duplicate nodes we have [1,2,4,7,8,9,10,6,3].
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
想不到“边界”应该怎么控制:用boolean变量表示方向l/r
主函数中设置t f,强制性设置好条件往左右扩展。dfs函数中设置== null, 有条件才往左右扩展,能走多深走多深。
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
- dfs一直是对当前节点操作的,不是node.left/node.right
- 因为dfs的函数是左右分开的,不存在一了百了的情况。所以主函数也要一个点先进去,然后再进行dc。
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
想不到“边界”应该怎么控制:用boolean变量表示方向l/r
[复杂度]:Time complexity: O(n) Space complexity: O(n)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
solution要用来新建answer对象。然后TreeNode root需要在主函数中再声明一遍。
class MyCode {
public static void main (String[] args) {
Solution answer = new Solution();
answer.root = new TreeNode(1);
answer.root.right = new TreeNode(2);
answer.root.right.left = new TreeNode(3);
answer.root.right.right = new TreeNode(4); List<Integer> result = answer.boundaryOfBinaryTree(answer.root);
for (int i = 0; i < result.size(); i++)
System.out.println("result.get(i) = " + result.get(i));
}
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
// package whatever; // don't place package name! import java.io.*;
import java.util.*;
import java.lang.*; class TreeNode
{
int val;
TreeNode left, right; //parameter is another item
TreeNode(int item) {
val = item;
left = right = null;
}
} class Solution {
TreeNode root; public List<Integer> boundaryOfBinaryTree(TreeNode root) {
//initialization
List<Integer> result = new ArrayList<Integer>();
//corner case
if (root == null) return result;
//dfs in left and right
result.add(root.val);
dfs(root.left, true, false, result);
dfs(root.right, false, true, result);
//return
return result;
} public void dfs(TreeNode root, boolean lb, boolean rb, List<Integer> result) {
//exit case
if (root == null) return ;
//add the left root
if (lb) result.add(root.val);
//add the mid root
if (!lb && !rb && root.left == null && root.right == null)
result.add(root.val);
//dfs in left and right
dfs(root.left, lb, rb && root.left == null, result);
dfs(root.right, lb && root.left == null, rb, result);
//add the right root
if (rb) result.add(root.val);
}
} class MyCode {
public static void main (String[] args) {
Solution answer = new Solution();
answer.root = new TreeNode(1);
answer.root.right = new TreeNode(2);
answer.root.right.left = new TreeNode(3);
answer.root.right.right = new TreeNode(4); List<Integer> result = answer.boundaryOfBinaryTree(answer.root);
for (int i = 0; i < result.size(); i++)
System.out.println("result.get(i) = " + result.get(i));
}
}
545. Boundary of Binary Tree二叉树的边界的更多相关文章
- [LeetCode] 545. Boundary of Binary Tree 二叉树的边界
Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...
- [LeetCode] Boundary of Binary Tree 二叉树的边界
Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...
- Leetcode 110 Balanced Binary Tree 二叉树
判断一棵树是否是平衡树,即左右子树的深度相差不超过1. 我们可以回顾下depth函数其实是Leetcode 104 Maximum Depth of Binary Tree 二叉树 /** * Def ...
- [LeetCode] 111. Minimum Depth of Binary Tree ☆(二叉树的最小深度)
[Leetcode] Maximum and Minimum Depth of Binary Tree 二叉树的最小最大深度 (最小有3种解法) 描述 解析 递归深度优先搜索 当求最大深度时,我们只要 ...
- [LeetCode] 111. Minimum Depth of Binary Tree 二叉树的最小深度
Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...
- [LeetCode] 543. Diameter of Binary Tree 二叉树的直径
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...
- LeetCode - Boundary of Binary Tree
Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...
- [LeetCode] Serialize and Deserialize Binary Tree 二叉树的序列化和去序列化
Serialization is the process of converting a data structure or object into a sequence of bits so tha ...
- [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
随机推荐
- python中的copy.copy和copy.deepcopy
一个例子就搞清楚 import copy a = [1, 2, 3, 4, ['a', 'b']] #原始对象 b = a #赋值,传对象的引用 c = copy.copy(a) #对象拷贝,浅拷贝 ...
- select 查询
使用as给字段起别名,例如:select name as 姓名 from student; 模糊匹配(like) "_":一个占位符.例子:select * from studen ...
- Mysql临时文件目录控制
查看mysql的log-error日志发现如下错误: ERROR 3 (HY000): Error writing file '/tmp/MYbEd05t' (Errcode: 28) 这是由于mys ...
- C++Primer第五版——习题答案详解(一)
习题答案目录:https://www.cnblogs.com/Mered1th/p/10485695.html 第1章 开始&&第2章 变量和基本类型 练习1.3 #include&l ...
- 涂抹mysql笔记-mysql复制特性
<>mysql复制特性:既可以实现整个服务(all databases)级别的复制,也可以只复制某个数据库或某个数据库中的某个指定的表对象.即可以实现A复制到B(主从单向复制),B再复制到 ...
- k8s学习笔记之一:kubernetes简介
一.虚拟化技术 1.什么是虚拟化技术 虚拟化,是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机.在一台计算机上同时运行多个逻辑计算机,每个逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立 ...
- Vue中table合并单元格用法
<table> <tr> <th>地名</th> <th>结果</th> <th>人名</th> < ...
- 10-安装es
1.安装jdk(jdk要求1.8.20或1.7.55以上) 2.上传es安装包 3.解压es tar -zxvf elasticsearch-2.3.1.tar.gz -C /opt/app/ 4.e ...
- 63.(原65)纯 CSS 创作一个摇摇晃晃的 loader
原文地址:https://segmentfault.com/a/1190000015424389 修改后地址:https://scrimba.com/c/cqKv4VCR HTML code: < ...
- python print格式化输出。
python print格式化输出. 1. 打印字符串 print ("His name is %s"%("Aviad")) 效果: 2.打印整数 print ...