题目描述

面对格鲁的入侵,小黄人们要组建一支队伍,来抵御进攻,现在有编号为1 至n 的小黄人,任命编号为n 的队长,由其挑选队员,当然编号不是随便编的,每一个编号里都包含一个小黄人的个人信息,现在队长要挑选一些与自己有共同语言(两者编号的最大公约数大于1)的小黄人组建队伍,现在给出n,请你计算出队伍中最多可以有多少的小黄人。

样例输入

4

样例输出

2

题目大意

求出在\(1\)~\(n\)中有多少个数和\(n\)不互质。

解法

欧拉函数,直接暴力求解有多少个数和\(n\)互质,再拿\(n\)减去得到答案。

ac代码

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL n;
LL read(){
    LL w=0,x=0;char ch=0;
    while(!isdigit(ch))w|=ch=='-',ch=getchar();
    while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
LL euler(LL n){//欧拉函数直接求[1,n]中有多少个数和n互质
    LL res=n;
    for(LL i=2;i<=sqrt(n);i++){
        if(n%i==0){
            res=res/i*(i-1);
            while(n%i==0) n/=i;
        }
    }
    if(n>1)res=res/n*(n-1);
    return res;
}
int main(){
    n=read();
    printf("%lld\n",n-euler(n));
    return 0;
}

[hgoi#2019/2/17t1]million的更多相关文章

  1. 「HGOI#2019.4.19省选模拟赛」赛后总结

    t1-Painting 这道题目比较简单,但是我比较弱就只是写了一个链表合并和区间DP. 别人的贪心吊打我的DP,嘤嘤嘤. #include <bits/stdc++.h> #define ...

  2. [hgoi#2019/3/21]NOIP&NOI赛后总结

    前言 今天做的是是2010年提高组和NOI的题目,做过几道原题,但是还是爆炸了,我真的太弱了. t1-乌龟棋 https://www.luogu.org/problemnew/show/P1541 这 ...

  3. [hgoi#2019/3/10]赛后总结

    关于本次hg模拟赛,题目来源于CF1110. t1-无意义运算符(meaning) 题目描述 最大公约数和位运算之间有共同点吗?是时候来研究一下了. 给定一个正整数a,请找到一个闭区间[1,a-1] ...

  4. [hgoi#2019/3/3]赛后总结

    T1--最长公共前缀(lcp) 定义两个字符串S,T 的最长公共前缀lcp(S,T)为最长的字符串R,满足R 既是S 的前缀又是T 的前缀. 给定一个字符串S,下标从1 开始,每次询问给出四个正整数a ...

  5. [hgoi#2019/2/16t3]psolve

    题目描述 Dustar有n道题目要做.他的月薪是m元. 由于题目是一流的难题,所以Dustar不得不找个人来帮(代)助(替)他写作业. 找人写作业不是免费的,但是他们能保证在一个月内做出任何题目.每做 ...

  6. [hgoi#2019/2/16t2]friend

    题目描述 在一个遥远的国度里有n个人,每个人手上写着4个互不相同的数. 这个国度比较奇怪,如果两个人至少有一个数字相同,则他们是一对朋友. 现在这n个人按序号从左到右排成了一排,每个人都想知道在他左边 ...

  7. [hgoi#2019/2/16t1]math

    题目描述 解法 我们稍微枚举一下前面几位,可以得到这样的规律. \[X_i=\frac{1}{2^{i+1}-1}\] \[Y_i=\frac{1}{2^{2^i}-1}\] 那么要使\(xm=yn\ ...

  8. [hgoi#2019/2/24]玄学考试

    感想 对于这次考试,真的不想说什么了,太玄学了!!! t1输出比标准输出长,这是什么操作???难道要关文件???但是交到oj上又A掉了.这是什么操作. t2还好,没有出什么意外...但是要吐槽一下出题 ...

  9. [hgoi#2019/2/18]比较水

    T1--调换纸牌(card) Alex有 n张纸牌,每张纸牌上都有一个值ai,Alex把这些纸牌排成一排,希望将纸牌按值从小到大的顺序排好.现在他把这个任务交给你,你只能进行一种操作:选中一张牌,然后 ...

随机推荐

  1. Ionic app 通知在Moto 360 Watch上显示通知(2)

    在前一篇文章中,我们已经将Wtach的环境测试成功,下面进入我们自己消息的接收. 1.安装JPush插件在我们的App中,这个具体步骤可以参考 Ionic 安装JPush过程 2.在App上的登录模块 ...

  2. Luogu P2482 [SDOI2010]猪国杀

    这道题在模拟界地位不亚于Luogu P4604 [WC2017]挑战在卡常界的地位了吧. 早上到机房开始写,中间因为有模拟赛一直到1点过才正式开始码. 一边膜拜CXR dalao一边写到3点左右,然后 ...

  3. 浅谈CDQ分治与偏序问题

    初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...

  4. HDU 3400

    一道很适合练习三分的题目三分套三分强不强 题意:给你平面上两条平行线段\(AB\)和\(CD\),一个人要从\(A\)走到\(D\),他在线段\(AB\)上的速度为\(P\),在\(CD\)上的速度为 ...

  5. [Codeforces1137D]Cooperative Game

    [Codeforces1137D]Cooperative Game Tags:题解 题意 这是一道交互题. 给你一张下面这样的地图,由一条长为\(t\)的有向链和一个长为\(c\)的环构成. 现在你有 ...

  6. TDD、BDD、ATDD、DDD 软件开发模式

    TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...

  7. sqli-labs less 5-6

    sqli-labs less 5-6 从源代码中可以看到,运行返回结果正确的时候只返回you are in....,不会返回数据库当中的信息了,以前的union联合查询就不能用了,开始尝试盲注. 简单 ...

  8. bootstrap面试题

    1.你能描述一下渐进增强和优雅降级之间的不同吗? 优雅降级:Web站点在所有新式浏览器中都能正常工作,如果用户使用的是老式浏览器,则代码会检查以确认它们是否能正常工作.由于IE独特的盒模型布局问题,针 ...

  9. Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)-A-Single Wildcard Pattern Matching

    #include<iostream> #include<algorithm> #include<stdio.h> #include<string.h> ...

  10. LINUX内核分析第八周总结:进程的切换和系统的一般执行过程

    一.进程调度与进程切换 1.不同的进程有不同的调度需求 第一种分类: I/O密集型(I/O-bound) 频繁的进行I/O 通常会花费很多时间等待I/O操作的完成 CPU密集型(CPU-bound) ...