解答:

评:最小值在Q为球心时取到,体现数学对称性的美!

MT【1】终点在球面上的向量的更多相关文章

  1. python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)

    求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...

  2. UVA10827球面上的最大和

    题意:      最大子矩阵的加强版,就是给你一个n*n的矩阵,每个格子里面都有数字,然后我们在里面选择一个矩阵,使得矩阵中所有数字的和最大,而且这个题目说这个n*n的矩阵的最右边和最左边是相邻的,最 ...

  3. 【转载】屏幕坐标向3维坐标的转化-DXUT的CD3DArcBall类

    原文:http://blog.csdn.net/bluekitty/article/details/6070828 3D应用程序中,我们可以通过鼠标进行空间中物体的旋转和视角的变换等,而鼠标的移动是2 ...

  4. 3D数学读书笔记——向量运算及在c++上的实现

     本系列文章由birdlove1987编写.转载请注明出处.     文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661   ...

  5. 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)

    向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...

  6. OpenGL 用三角形模拟生成球面

    在看OpenGL红皮书,看到生成球体这节,讲了很多,总感觉不如自己动手写一些代码来的实在,用OpenGL中三角形模拟球形生成.主要要点,模型视图变换,多边形表面环绕一致性,矩阵堆栈.先贴上代码. 虽然 ...

  7. 向量的表示及协方差矩阵 (PCA的理论基础)

    原文:http://blog.csdn.net/songzitea/article/details/18219237 引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性 ...

  8. [BZOJ4311]向量(凸包+三分+线段树分治)

    可以发现答案一定在所有向量终点形成的上凸壳上,于是在上凸壳上三分即可. 对于删除操作,相当于每个向量有一个作用区间,线段树分治即可.$O(n\log^2 n)$ 同时可以发现,当询问按斜率排序后,每个 ...

  9. PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933),即最大方差理论。

    PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量 ...

随机推荐

  1. 『转』统计一个日志文件里,单词出现频率的shell脚本

    原文地址:http://blog.csdn.net/taiyang1987912/article/details/39995175 #查找文本中n个出现频率最高的单词 #!/bin/bash coun ...

  2. SQL Server 中用DBCC Opentran语句查看未关闭的事务(转载)

    从SQL Server 2008开始,可以使用DBCC Opentran语句查看数据库中最早一个没有被关闭的事务,下面这篇文章讲述了如何使用DBCC Opentran语句. An Open trans ...

  3. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  4. NOIP2002-2017普及组题解

    虽然普及组一般都是暴力省一,但是有一些题目还是挺难的qwq个人觉得能进TG的题目会在前面打上'*' NOIP2002(clear) #include<bits/stdc++.h> usin ...

  5. 在属性property做一些简单的验证

    开发C#的程序,写到属性property时,我们可以在Set方法中做一些简单的规则验证: 如下面,Insus.NET写一个Age属性,只允许用户输入10以内的数字: class AA { privat ...

  6. JVM规范系列:总结

    我们花了几天的时间来阅读<Java虚拟机规范>,了解要实现一个虚拟机应该包括什么内容.通过这么一次阅读,我们大致了解了虚拟机规范的内容. 第1章.对Java虚拟机进行了一些简单的介绍. 第 ...

  7. SpringBoot日记——ElasticSearch全文检索

    看到标题的那一串英文,对于新手来说一定比较陌生,而说起检索,应该都知道吧. 这个ElasticSearch目前我们的首选,他主要有可以提供快速的存储.搜索.分析海量数据的作用.他是一个分布式搜索服务, ...

  8. 跨平台、跨语言应用开发,Elements 介绍

    目录 1,Elements 介绍 2,Elements 版本 3,Elements 能干嘛 4,Elements  IDES 5,Elements 工具 1,Elements 介绍 RemObject ...

  9. throws和throw抛出异常的使用规则

    一直对java中的throws和throw不太理解.最近一直在查这两个方面的资料,算是能明白一点吧.如果我下面的观点哪有不对,希望指出来,我加以改进.         throw:(针对对象的做法) ...

  10. 爬虫时http错误提示

    在爬虫,请求网站的时候,有时候出现域名报错,所出现的代码所对应的意思: