设$d[x]$表示端点位于$x$子树内部的非树边条数,那么有两种情况:

$1.$割去的两条树边$(x,fa[x]),(y,fa[y])$中,$x$是$y$的祖先,那么此时需要割去的非树边数量为$d[x]-d[y]$。

显然固定$x$之后$y$越靠上越好,因此$y$一定是$x$的儿子,枚举即可,时间复杂度$O(n)$。

$2.$一般化的情况,此时$x\neq y$,需要割去的非树边数量为$d[x]+d[y]-2cnt(x,y)$,其中$cnt(x,y)$表示一端在$x$子树中,另一端在$y$子树中的非树边数量。

枚举$x$,对于每个$y$维护$d[y]-2cnt(x,y)$。

首先需要把$x$子树的$cnt$合并,然后对于一条端点恰好为$x$的非树边$(x,u)$,需要把$u$到根路径上的$d-2cnt$都减去$2$。

树链剖分+线段树维护即可,时间复杂度$O(m\log^2n)$。

直接实现的话,空间复杂度也为$O(m\log^2n)$,不能承受。

每次先dfs重儿子,将$x$的重儿子的线段树直接作为$x$的线段树,然后依次与轻儿子合并,同时将废弃线段树节点回收利用。

如此一来,只有经过轻边时,才会多开一棵动态开点的线段树,那么一共只会同时存在$O(\log n)$棵线段树。

每棵线段树就算开满也只有$O(n)$的空间,因此空间复杂度为$O(n\log n)$。

#include<cstdio>
const int N=20010,M=100010,E=1200000;
int Case,cas,n,m,i,x,y,g[N],v[N<<1],nxt[N<<1],ed,ans;
int d[N],G[N],V[M<<1],NXT[M<<1],ED;
int f[N],size[N],son[N],top[N],loc[N],dfn,q[N];
int T[N],l[E],r[E],tag[E],val[E],pool[E],cur,w[66000];
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void ADD(int x,int y){d[x]++;V[++ED]=y;NXT[ED]=G[x];G[x]=ED;}
inline void umin(int&a,int b){a>b?(a=b):0;}
inline int min(int a,int b){return a<b?a:b;}
void dfs(int x){
size[x]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=f[x]){
f[v[i]]=x;
dfs(v[i]);
size[x]+=size[v[i]],d[x]+=d[v[i]];
if(size[v[i]]>size[son[x]])son[x]=v[i];
}
if(x>1)for(int i=g[x];i;i=nxt[i])if(v[i]!=f[x])umin(ans,d[x]-d[v[i]]);
}
void dfs2(int x,int y){
loc[x]=++dfn;top[x]=y;
if(son[x])dfs2(son[x],y);
for(int i=g[x];i;i=nxt[i])if(v[i]!=son[x]&&v[i]!=f[x])dfs2(v[i],v[i]);
}
void build(int x,int a,int b){
if(a==b){w[x]=q[a];return;}
int mid=(a+b)>>1;
build(x<<1,a,mid),build(x<<1|1,mid+1,b);
w[x]=min(w[x<<1],w[x<<1|1]);
}
inline int newnode(int o){
int x=pool[cur--];
l[x]=r[x]=tag[x]=0;val[x]=w[o];
return x;
}
inline void tag1(int x,int p){tag[x]+=p;val[x]+=p;}
inline void pb(int x,int o){
if(tag[x]){
if(!l[x])l[x]=newnode(o<<1);
if(!r[x])r[x]=newnode(o<<1|1);
tag1(l[x],tag[x]),tag1(r[x],tag[x]),tag[x]=0;
}
}
inline void up(int x,int o){
if(!l[x])l[x]=newnode(o<<1);
if(!r[x])r[x]=newnode(o<<1|1);
val[x]=min(val[l[x]],val[r[x]]);
}
void change(int&x,int o,int a,int b,int c,int d,int p){
if(!x)x=newnode(o);
if(c<=a&&b<=d){tag1(x,p);return;}
pb(x,o);
int mid=(a+b)>>1;
if(c<=mid)change(l[x],o<<1,a,mid,c,d,p);
if(d>mid)change(r[x],o<<1|1,mid+1,b,c,d,p);
up(x,o);
}
inline void chain(int&T,int x){
while(top[x]!=1)change(T,1,1,n,loc[top[x]],loc[x],-2),x=f[top[x]];
if(x>1)change(T,1,1,n,2,loc[x],-2);
}
int merge(int x,int y,int o,int a,int b){
if(!x||!y)return x+y;
if(a==b)tag[x]+=tag[y];
else{
pb(x,o),pb(y,o);
int mid=(a+b)>>1;
l[x]=merge(l[x],l[y],o<<1,a,mid);
r[x]=merge(r[x],r[y],o<<1|1,mid+1,b);
up(x,o);
}
pool[++cur]=y;
return x;
}
void clear(int x,int a,int b){
if(!x)return;
pool[++cur]=x;
if(a==b)return;
int mid=(a+b)>>1;
clear(l[x],a,mid),clear(r[x],mid+1,b);
}
void dfs3(int x){
if(son[x])dfs3(son[x]),T[x]=T[son[x]];
for(int i=g[x];i;i=nxt[i])if(v[i]!=son[x]&&v[i]!=f[x])dfs3(v[i]),T[x]=merge(T[x],T[v[i]],1,1,n);
if(x==1)return;
for(int i=G[x];i;i=NXT[i])chain(T[x],V[i]);
change(T[x],1,1,n,loc[x],loc[x],M);
umin(ans,d[x]+val[T[x]]);
change(T[x],1,1,n,loc[x],loc[x],-M);
}
int main(){
for(i=1;i<E;i++)pool[++cur]=i;
scanf("%d",&Case);
for(cas=1;cas<=Case;cas++){
scanf("%d%d",&n,&m);ans=M;
for(i=1;i<n;i++)scanf("%d%d",&x,&y),add(x,y),add(y,x);
for(;i<=m;i++)scanf("%d%d",&x,&y),ADD(x,y),ADD(y,x);
dfs(1),dfs2(1,1);
for(i=1;i<=n;i++)q[loc[i]]=d[i];
build(1,1,n);
dfs3(1);
printf("Case #%d: %d\n",cas,ans+2);
clear(T[1],1,n);
for(ed=ED=dfn=0,i=1;i<=n;i++)g[i]=d[i]=G[i]=f[i]=size[i]=son[i]=T[i]=0;
}
return 0;
}

  

HDU5511 : Minimum Cut-Cut的更多相关文章

  1. linux sort,uniq,cut,wc.

    文章转自 http://www.cnblogs.com/ggjucheng/archive/2013/01/13/2858385.html sort sort 命令对 File 参数指定的文件中的行排 ...

  2. [转]linux sort,uniq,cut,wc命令详解

    sort sort 命令对 File 参数指定的文件中的行排序,并将结果写到标准输出.如果 File 参数指定多个文件,那么 sort 命令将这些文件连接起来,并当作一个文件进行排序. sort语法 ...

  3. linux sort,uniq,cut,wc命令详解

    linux sort,uniq,cut,wc命令详解 sort sort 命令对 File 参数指定的文件中的行排序,并将结果写到标准输出.如果 File 参数指定多个文件,那么 sort 命令将这些 ...

  4. linux sort,uniq,cut,wc,tr命令详解

    sort是在Linux里非常常用的一个命令,对指定文件进行排序.去除重复的行 sort 命令对 File 参数指定的文件中的行排序,并将结果写到标准输出.如果 File 参数指定多个文件,那么 sor ...

  5. Linux之 sort,uniq,cut,wc命令详解

    sort sort 命令对 File 参数指定的文件中的行排序,并将结果写到标准输出.如果 File 参数指定多个文件,那么 sort 命令将这些文件连接起来,并当作一个文件进行排序. sort语法 ...

  6. Linux Shell脚本入门--cut命令

    Linux Shell脚本入门--cut命令 cut cut 命令可以从一个文本文件或者文本流中提取文本列. cut语法 [root@www ~]# cut -d'分隔字符' -f fields &l ...

  7. Ubuntu 14.10 下sort,uniq,cut,wc命令详解

    sort sort 命令对 File 参数指定的文件中的行排序,并将结果写到标准输出.如果 File 参数指定多个文件,那么 sort 命令将这些文件连接起来,并当作一个文件进行排序. sort语法 ...

  8. 文本处理命令--cut、sort、join

    声明:下面介绍的只是命令的常用选项,如果需要详细了解命令全部细节,需要参考其他的资料. 一.cut cut是一个选取命令,就是将一段数据经过分析,取出我们想要的.一般来说,选取信息通常是针对“行”来进 ...

  9. Linux Shell脚本编程--cut命令

    cut cut命令可以从一个文本文件或者文本流中提取文本列. cut语法 [root@www ~]# cut -d'分隔字符' -f fields <==用于有特定分隔字符 [root@www ...

随机推荐

  1. 眼底血管分割训练函数(SVM,Adaboost)

    # -*- coding: utf-8 -*- import numpy as np from sklearn import svm from sklearn.model_selection impo ...

  2. 火狐浏览器无故卡死,未响应或者占大量cpu资源解决方案

    这是火狐社区的文章,对火狐浏览器无故卡死,未响应或者占大量cpu资源有详细的说明和解决,记录下!!! ++++++++++++++++++++++++++++++++ Firefox 挂起 如果您的 ...

  3. HDU 1075 What Are You Talking About (stl之map映射)

    What Are You Talking About Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/204800 K ...

  4. 一 time与datetime模块

    时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们运行“type(time.time())”,返回的是float类型. 格式化的时间字 ...

  5. windows环境下永久修改pip镜像源的方法(转)

    一.在windows环境下修改pip镜像源的方法(以python3.7为例) (1):在windows文件管理器中,输入 %APPDATA%,cmd里面输入即可. (2):会定位到一个新的目录下,在该 ...

  6. SQLServer 表连接种类

    SQLServer 有3种物理连接:Nested Loop(嵌套循环).Merge Join(合并联接).Hash Join(哈希联接). T-SQL中的inner/left/right/full j ...

  7. 视频H265格式压缩,软件压缩方法,硬件的没有条件,没法测试。

    libx265软压c:/ffmpeg/ffmpeg.exe -i input.mp4 -c:v libx265 -preset:v fast output.mp4 原文件大小:610.87mb 目标文 ...

  8. (转载)C#压缩解压zip 文件

    转载之: C#压缩解压zip 文件 - 大气象 - 博客园http://www.cnblogs.com/greatverve/archive/2011/12/27/csharp-zip.html C# ...

  9. ELK 环境搭建1-Elasticsearch

    一.安装前准备 1.节点 192.168.30.41 192.168.30.42 192.168.30.43 2.操作系统: Centos7.5 3.安装包 a.java8: jdk-8u181-li ...

  10. 20165319 2017-2018-2《Java程序设计》课程总结

    一.每周作业链接汇总 预备作业一:我期望的师生关系 20165319 我所期望的师生关系 预备作业二:学习基础和C语言基础调查 20165319 学习基础和C语言基础调查 摘要: 技能学习经验 c语言 ...