概率dp总结 正在更新
借bin神一句话
概率DP主要用于求解期望、概率等题目。
转移方程有时候比较灵活。
一般求概率是正推,求期望是逆推。通过题目可以体会到这点。
先推公式
多个 -> 一个
明确dp[i]代表什么意思
寻找 i 与 前或后的联系
如果出现了最优的字眼 那么在递推的时候 要明确是用max 还是 min
概率dp总结 正在更新的更多相关文章
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- [NOIP2016 D1T3]换教室 【floyd+概率dp】
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq i \leq n1≤ ...
- 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)
2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...
- 【bzoj3566】[SHOI2014]概率充电器 树形概率dp
题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...
- [BZOJ4899]:记忆的轮廓(概率DP)
题目传送门 题目描述: 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- codeforces 597 div2 E. Hyakugoku and Ladders(概率dp)
题目链接:https://codeforces.com/contest/1245/problem/E 题意:有一个10x10的网格,左下角是起点,左上角是终点,从起点开始,如图所示蛇形走到终点,每一步 ...
- 期望概率DP
期望概率DP 1419: Red is good Description 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 ...
- Codeforces 28C [概率DP]
/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
随机推荐
- Subversion 1.8.9 ( SVN Client ) 安装最新版本的svn客户端
For CentOS7 Users: [WandiscoSVN] name=Wandisco SVN Repo baseurl=http://opensource.wandisco.com/cento ...
- 一、java三大特性--封装
封装字面意思即包装.专业点来说就是数据隐藏,是指利用抽象数据将数据和基于数据的操作封装起来,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能的隐藏细节,只保留一些对外的接口和外部 ...
- SQL中char、varchar、nvarchar、ntext的区别(转载)
char char是定长的,也就是当你输入的字符小于你指定的数目时,char(8),你输入的字符小于8时,它会再后面补空值.当你输入的字符大于指定的数时,它会截取超出的字符.nvarchar(n ...
- EF性能优化-有人说EF性能低,我想说:EF确实不如ADO.NET
十年河东,十年河西,莫欺少年穷. EF就如同那个少年,ADO.NET则是一位壮年.毕竟ADO.NET出生在EF之前,而EF所走的路属于应用ADO.NET. 也就是说:你所写的LINQ查询,最后还是要转 ...
- Luogu P1337 [JSOI2004]平衡点 / 吊打XXX
一道入门模拟退火的经典题,还是很考验RP的 首先我们发现神TM这道题又和物理扯上了关系,其实是一道求广义费马点的题目 首先我们可以根据物理知识得到,当系统处于平衡状态时,系统的总能量最小 又此时系统的 ...
- 事件(event)
事件概述 委托是一种类型可以被实例化,而事件可以看作将多播委托进行封装的一个对象成员(简化委托调用列表增加和删除方法)但并非特殊的委托,保护订阅互不影响. 基础事件(event) 在.Net中声明事件 ...
- Effective C++学习笔记之explicit
关键字: explicit意思为“明确的”和“清楚的”,是C++的关键词,意在阻止隐式类型的转换: 使用原因: 有时候不合法的隐式转换,会让乖巧听话的程序变得不可控.所以适当地使用explicit关键 ...
- Jmeter(三十一)_数据驱动,业务关联
这种数据驱动的本质是:将测试的case,参数,url,预期结果,存储于本地excel中.运行脚本时,从文件中获取预期结果,将实际结果与预期结果比较,将实际结果,比较结果,响应状态码回写excel. 一 ...
- 小白必须懂的MongoDB的十大总结
小白必须懂的MongoDB的总结 一.MongoDB的认识 1.什么是MongoDB? MongoDB 是一个介于关系数据库和非关系数据库之间的开源产品,是最接近于关系型数据库的 NoSQL 数据库. ...
- LInux系统木马植入排查分析 及 应用漏洞修复配置(隐藏bannner版本等)
在日常繁琐的运维工作中,对linux服务器进行安全检查是一个非常重要的环节.今天,分享一下如何检查linux系统是否遭受了入侵? 一.是否入侵检查 1)检查系统日志 检查系统错误登陆日志,统计IP重试 ...