BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数。四个等比数列形式的多项式相乘,可以化成四个分式。其中分母部分是固定的,可以多项式求逆预处理出来。而分子部分由于项数很少,询问时2^4算一下贡献就好了。这个思路比较直观。只是常数巨大,以及需要敲一发类似任意模数ntt的东西来避免爆精度。成功以这种做法拿下luogu倒数rank1,至于bzoj不指望能过了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iomanip>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 550000
#define T 100000
#define P1 998244353
#define P2 1004535809
int r[N],c1,c2,c3,c4,tot,d1,d2,d3,d4,s,t;
int a[N],b[N],c[N],e[][N];
long long f[N];
void inc(int &x,int P){x++;if (x>=P) x-=P;}
void dec(int &x,int P){x--;if (x<) x+=P;}
int ksm(int a,int k,int P)
{
if (a==) return ;
if (k==) return ;
int tmp=ksm(a,k>>,P);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
long long ksc(long long a,long long b,long long P)
{
long long t=a*b-(long long)((long double)a*b/P+0.5)*P;
return t<?t+P:t;
}
void DFT(int n,int *a,int p,int P)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (register int i=;i<=n;i<<=)
{
int wn=ksm(p,(P-)/i,P);
for (register int j=;j<n;j+=i)
{
int w=;
for (register int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void mul(int n,int *a,int *b,int P,int inv3)
{
DFT(n,a,,P),DFT(n,b,,P);
for (int i=;i<n;i++) a[i]=1ll*a[i]*(P+-1ll*a[i]*b[i]%P)%P;
DFT(n,a,inv3,P);
int inv=ksm(n,P-,P);
for (int i=;i<n;i++) a[i]=1ll*a[i]*inv%P;
}
void solve(int P,int inv3,int op)
{
memset(a,,sizeof(a));
memset(b,,sizeof(b));
memset(c,,sizeof(c));
if (c1+c2+c3+c4<=T) inc(a[c1+c2+c3+c4],P);
if (c1+c2+c3<=T) dec(a[c1+c2+c3],P);
if (c1+c2+c4<=T) dec(a[c1+c2+c4],P);
if (c4+c2+c3<=T) dec(a[c4+c2+c3],P);
if (c1+c4+c3<=T) dec(a[c1+c4+c3],P);
if (c1+c2<=T) inc(a[c1+c2],P);
if (c1+c3<=T) inc(a[c1+c3],P);
if (c1+c4<=T) inc(a[c1+c4],P);
if (c2+c3<=T) inc(a[c2+c3],P);
if (c4+c2<=T) inc(a[c4+c2],P);
if (c3+c4<=T) inc(a[c3+c4],P);
dec(a[c1],P);dec(a[c2],P);dec(a[c3],P);dec(a[c4],P);
inc(a[],P);
t=;b[]=;
while (t<=T)
{
t<<=;
for (int i=;i<t;i++) c[i]=a[i];
for (int i=;i<(t<<);i++) r[i]=(r[i>>]>>)|(i&)*t;
mul(t<<,b,c,P,inv3);
for (int i=t;i<(t<<);i++) b[i]=;
}
memcpy(e[op],b,sizeof(e[op]));
}
void crt()
{
long long P=1ll*P1*P2,inv1=ksm(P2%P1,P1-,P1),inv2=ksm(P1%P2,P2-,P2);
for (int i=;i<=T;i++)
f[i]=(ksc(1ll*e[][i]*P2%P,inv1,P)+ksc(1ll*e[][i]*P1%P,inv2,P))%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1042.in","r",stdin);
freopen("bzoj1042.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
c1=read(),c2=read(),c3=read(),c4=read(),tot=read();
solve(P1,,);
solve(P2,,);
crt();
while (tot--)
{
d1=read(),d2=read(),d3=read(),d4=read(),s=read();
d1=min(1ll*s+,1ll*(d1+)*c1);
d2=min(1ll*s+,1ll*(d2+)*c2);
d3=min(1ll*s+,1ll*(d3+)*c3);
d4=min(1ll*s+,1ll*(d4+)*c4);
long long ans=f[s];
if (d1+d2+d3+d4<=s) ans+=f[s-(d1+d2+d3+d4)];
if (d1+d2+d3<=s) ans-=f[s-(d1+d2+d3)];
if (d1+d2+d4<=s) ans-=f[s-(d1+d2+d4)];
if (d4+d2+d3<=s) ans-=f[s-(d4+d2+d3)];
if (d1+d4+d3<=s) ans-=f[s-(d1+d4+d3)];
if (d1+d2<=s) ans+=f[s-(d1+d2)];
if (d1+d3<=s) ans+=f[s-(d1+d3)];
if (d1+d4<=s) ans+=f[s-(d1+d4)];
if (d2+d3<=s) ans+=f[s-(d2+d3)];
if (d4+d2<=s) ans+=f[s-(d4+d2)];
if (d3+d4<=s) ans+=f[s-(d3+d4)];
if (d1<=s) ans-=f[s-d1];
if (d2<=s) ans-=f[s-d2];
if (d3<=s) ans-=f[s-d3];
if (d4<=s) ans-=f[s-d4];
printf(LL,ans);
}
return ;
}
还有一种更优秀的做法。考虑如果硬币没有个数限制的话,就是一个完全背包。添加限制可以想到容斥。我们枚举有哪几种硬币超过了个数限制,就可以容斥斥斥容容容斥把多重背包转化成完全背包了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iomanip>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define ll long long
int c[],t,d[],s;
ll f[N],ans;
int calc(int k,int x){if (k<x) return ;else return f[k-x];}
void dfs(int k,int sum,ll tot)
{
if (tot>s) return;
if (k==) {ans+=((sum&)?-:)*f[s-tot];return;}
dfs(k+,sum+,tot+1ll*(d[k]+)*c[k]);
dfs(k+,sum,tot);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1042.in","r",stdin);
freopen("bzoj1042.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
for (int i=;i<;i++) c[i]=read();
t=read();
f[]=;
for (int i=;i<;i++)
for (int j=c[i];j<=N-;j++)
f[j]+=f[j-c[i]];
while (t--)
{
for (int i=;i<;i++) d[i]=read();
s=read();
ans=;
dfs(,,);
printf(LL,ans);
}
return ;
}
仔细考虑一下会发现两个做法本质上其实是一样的。分子部分所乘的多项式就是一个容斥的过程,而求逆所得的结果就是完全背包。
BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)的更多相关文章
- 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆
题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...
- BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2924 Solved: 1802 [Submit][St ...
- 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)
3456: 城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 658 Solved: 364 Description 刚刚解决完电力网络的问题 ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
- BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...
- BZOJ 3456 城市规划 ( NTT + 多项式求逆 )
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...
- [BZOJ3456]城市规划:DP+NTT+多项式求逆
写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...
- P4233-射命丸文的笔记【NTT,多项式求逆】
正题 题目链接:https://www.luogu.com.cn/problem/P4233 题目大意 随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数. 对于每个\( ...
- BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1042 题目概括 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了t ...
随机推荐
- 开发板测试-Wi-Fi
一,下载STM32程序 1,方式一,串口下载(其他下载方式在最后补充) ①调整拨动开关位置 → 短接BOOT0和3.3V → 复位STM32 ②打开下载软件,下载程序 去掉短接 ③测试 {data:s ...
- Attention[Content]
0. 引言 神经网络中的注意机制就是参考人类的视觉注意机制原理.即人眼在聚焦视野区域中某个小区域时,会投入更多的注意力到这个区域,即以"高分辨率"聚焦于图像的某个区域,同时以&qu ...
- Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP
传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...
- 设计模式:装饰模式(decorate)
还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 废话不多说,直接进入正题: 今天学习了装饰模式,但是代码看不太懂,于是我将装饰 ...
- 针对django2.2报错:UnicodeDecodeError: 'gbk' codec can't decode byte 0xa6 in position 9737: ill....
1.报错: File "D:\Python\Python37-32\lib\site-packages\django\views\debug.py", line 332, in g ...
- SQLAlchemy模块的使用教程
数据库表是一个二维表,包含多行多列.把一个表的内容用Python的数据结构表示出来的话,可以用一个list表示多行,list的每一个元素是tuple,表示一行记录,比如,包含id和name的user表 ...
- 【JVM.4】调优案例分析与实战
之前已经介绍过处理Java虚拟机内存问题的知识与工具,在处理实际项目的问题时,除了知识与工具外,经验同样是一个很重要的因素.本章会介绍一些具有代表性的案例. 本章的内容推荐还是原文全篇看完的好,实在不 ...
- REST-framework快速构建API--分页
分页简介 当数据量特别大的时候,我们通过API获取数据会非常慢,所以此时我们需要将数据"分批次"取出来,这里的"分批次"就是,分页! REST框架支持自定义分页 ...
- Munge服务部署和测试
1. 概述2. 下载3. 安装3.1 源码简要说明3.2 编译安装3.3 配置3.4 创建munge.key3.5 启动方式 1. 概述 munge是认证服务,用于生成和验证证书.应用于大规模的HPC ...
- Linux运维笔记-日常操作命令总结(3)
文本操作:sed sed是一个很好的文件处理工具,本身是一个管道命令,主要是以行为单位进行处理,可以将数据行进行替换.删除.新增.选取等特定工作. sed命令行格式为: sed [-nefri] ‘c ...