bzoj5093:[Lydsy1711月赛]图的价值
首先考虑到这是一张有标号的图,每一个点的地位是相等的,因此我们只需要求出一个点的价值和乘上\(n\)就好了
考虑一个点有多少种情况下度数为\(i\)
显然我们可以让除了这个点的剩下的\(n-1\)个点之间的边随便连,之后这个点从\(n-1\)个点里选择\(i\)个连边就好了,于是是\(\binom{n-1}{i}\times 2^{\frac{(n-1)(n-2)}{2}}\)种情况这个点度数为\(i\)
我们现在要做的就是这个柿子了
\]
我们考虑一下展开\(i^k\),自然是用第二类斯特林数了
于是不管前面的,我们要求的东西是
\]
我们把\(j\)放到前面来枚举
\]
考虑一下\(\sum_{i=0}^{n-1} \binom{n-1}{i}\binom{i}{j}\)的组合意义,就是先从\(n-1\)里选择了\(i\)个又从\(i\)个里选择了\(j\)个,总体上看是选择了\(j\)个,是\(\binom{n-1}{j}\)种情况,但是我们只需要保证第一次选择的\(i\)完全包含\(j\),显然完全包含\(j\)的集合有\(2^{n-1-j}\)个
于是我们能把柿子写成这个样子
\]
现在的瓶颈在于求第二类斯特林数,我们记得斯特林数有一个容斥写法
\]
我们拆开组合数之后发现这是一个卷积的形式,因此我们可以用\(NTT\)在\(O(nlogn)\)的时间内卷出一行斯特林数来
于是就解决了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||x>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=8e5+5;
const int mod=998244353;
const int G[2]={3,332748118};
int rev[maxn],n,k,fac[maxn],inv[maxn];
int a[maxn],b[maxn],len,ifac[maxn];
inline int ksm(int a,int b) {
int S=1;
while(b) {if(b&1) S=1ll*S*a%mod;b>>=1;a=1ll*a*a%mod;}
return S;
}
inline void NTT(int *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1,og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
int t,og=1;
for(re int x=l;x<l+ln;++x) {
t=1ll*og*f[x+ln]%mod;
f[x+ln]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=1ll*og*og1%mod;
}
}
}
if(!o) return;
int inv=ksm(len,mod-2);
for(re int i=0;i<len;i++) f[i]=1ll*f[i]*inv%mod;
}
int main() {
n=read(),k=read();fac[0]=1,inv[1]=1;ifac[0]=1;
for(re int i=2;i<=k;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(re int i=1;i<=k;i++) fac[i]=1ll*fac[i-1]*i%mod;
for(re int i=1;i<=k;i++) ifac[i]=1ll*ifac[i-1]*inv[i]%mod;
len=1;while(len<=k+k+2) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
for(re int i=0;i<=k;i++)
a[i]=1ll*ifac[i]*ksm(i,k)%mod;
for(re int i=0;i<=k;i++)
if(i&1) b[i]=(mod-ifac[i])%mod;else b[i]=ifac[i];
NTT(a,0),NTT(b,0);
for(re int i=0;i<len;i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,1);
int tot=n-1,now=1,ans=0;
for(re int i=1;i<=k;i++) {
now=1ll*now*tot%mod;
tot--;if(tot<0) break;
ans=(ans+1ll*a[i]*now%mod*ksm(2,n-1-i)%mod)%mod;
}
LL t=1ll*(n-1)*(n-2)/2;t%=(mod-1);
ans=1ll*ans*n%mod;
ans=1ll*ans*ksm(2,t)%mod;
printf("%d\n",ans);
return 0;
}
bzoj5093:[Lydsy1711月赛]图的价值的更多相关文章
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- bzoj5093: [Lydsy1711月赛]图的价值
不难想到考虑每个点的贡献,ans=n*sigema(1~n)i C(n-1,i)*(2^C(n-1,2))*i^k 直接套第二类斯特林拆柿子即可.提示:sigema(1~n)i C(n,i)*C(i, ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- 【bzoj5093】 [Lydsy1711月赛]图的价值 组合数+斯特林数+NTT
Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向 ...
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
- BZOJ 5093: [Lydsy1711月赛]图的价值
第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一 ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- BZOJ 5093[Lydsy1711月赛]图的价值 线性做法
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum ...
- BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...
随机推荐
- JavaWeb学习 (九)————HttpServletRequest对象(一)
一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,通过这个对象 ...
- [HEOI2017] 寿司餐厅 + 最大权闭合子图的总结
Description 太长了自己看叭 点这里! Solution 先学一波什么叫最大权闭合子图. 先要明白什么是闭合子图,闭合子图就是给定一个有向图,从中选择一些点组成一个点集V.对于V中任意一个点 ...
- [转]Angular2-组件间数据传递的两种方式
本文转自:https://www.cnblogs.com/longhx/p/6960288.html Angular2组件间数据传递有多种方式,其中最常用的有两种,一种是配置元数据(或者标签装饰),一 ...
- 因 URL 意外地以“/HelloWorld”结束,请求格式无法识别。
WebService中发布之后出现这个错误, 解决方法: web.config文件中的 <system.web> 节点下加入:<webServices> <prot ...
- DotNetCore学习-2.程序启动
新创建的ASP.NET Core程序中包含两个文件,分别是Program.Startup.其中,Program中Main方法是整个应用程序的入口,该方法如下: var host = WebHost.C ...
- Ubuntu下JDK1.8安装后配置环境变量
export JAVA_HOME=/dengyang/jdk1.8.0_56export JRE_HOME=$JAVA_HOME/jreexport CLASSPATH=.:$JAVA_HOME/li ...
- java根据年月显示每周
一.页面效果 1.展示7月份的所有周. 2.当前时间2018.08.02 , 显示到本周. 二.前端代码 1.显示层的代码 <span id="weekyear"> ...
- 初学CSS-3-文字的属性
文字样式属性: 格式:font-style:italic;/normal; 快捷键:fsi / fsn + tab键 文字粗细属性: 格式:font-weight:bold;/bolder;/ligh ...
- js 中导出excel 较长数字串会变成科学计数法
在做项目中,碰到如题的问题.比如要将居民的信息导出到excel中,居民的身份证号码因为长度过长(大于10位),excel会自动的将过长的数字串转换成 科学计数法.现在网上找到解决方案之一: (在数字串 ...
- web全栈架构师[笔记] — 02 数据交互
数据交互 一.http协议 基本特点 1.无状态的协议 2.连接过程:发送连接请求.响应接受.发送请求 3.消息分两块:头.体 http和https 二.form 基本属性 action——提交到哪儿 ...