https://www.cnblogs.com/ybjourney/p/4714870.html

最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算法有一种莫名的亲切感,言归正传,今天我和大家一起来学习K-均值聚类算法。

一 K-均值聚类(K-means)概述

1. 聚类

“类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。

2. 无监督学习和监督学习

上一篇对KNN进行了验证,和KNN所不同,K-均值聚类属于无监督学习。那么监督学习和无监督学习的区别在哪儿呢?监督学习知道从对象(数据)中学习什么,而无监督学习无需知道所要搜寻的目标,它是根据算法得到数据的共同特征。比如用分类和聚类来说,分类事先就知道所要得到的类别,而聚类则不一样,只是以相似度为基础,将对象分得不同的簇。

3. K-means

k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化:

                                                     

结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使得算法收敛,在迭代过程中,应使最终的聚类中心尽可能的不变。

4. 算法流程

K-means是一个反复迭代的过程,算法分为四个步骤:

1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;

2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;

3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;

4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)。

用以下例子加以说明:

        

         图1             图2

        

              图3             图4

图1:给定一个数据集;

图2:根据K = 5初始化聚类中心,保证 聚类中心处于数据空间内;

图3:根据计算类内对象和聚类中心之间的相似度指标,将数据进行划分;

图4:将类内之间数据的均值作为聚类中心,更新聚类中心。

最后判断算法结束与否即可,目的是为了保证算法的收敛。

二  python实现

首先,需要说明的是,我采用的是python2.7,直接上代码:

#k-means算法的实现
#-*-coding:utf-8 -*-
from numpy import *
from math import sqrt import sys
sys.path.append("C:/Users/Administrator/Desktop/k-means的python实现") def loadData(fileName):
data = []
fr = open(fileName)
for line in fr.readlines():
curline = line.strip().split('\t')
frline = map(float,curline)
data.append(frline)
return data
'''
#test
a = mat(loadData("C:/Users/Administrator/Desktop/k-means/testSet.txt"))
print a
'''
#计算欧氏距离
def distElud(vecA,vecB):
return sqrt(sum(power((vecA - vecB),2))) #初始化聚类中心
def randCent(dataSet,k):
n = shape(dataSet)[1]
center = mat(zeros((k,n)))
for j in range(n):
rangeJ = float(max(dataSet[:,j]) - min(dataSet[:,j]))
center[:,j] = min(dataSet[:,j]) + rangeJ * random.rand(k,1)
return center
'''
#test
a = mat(loadData("C:/Users/Administrator/Desktop/k-means/testSet.txt"))
n = 3
b = randCent(a,3)
print b
'''
def kMeans(dataSet,k,dist = distElud,createCent = randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
center = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = inf
minIndex = -1
for j in range(k):
distJI = dist(dataSet[i,:],center[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:#判断是否收敛
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist ** 2
print center
for cent in range(k):#更新聚类中心
dataCent = dataSet[nonzero(clusterAssment[:,0].A == cent)[0]]
center[cent,:] = mean(dataCent,axis = 0)#axis是普通的将每一列相加,而axis=1表示的是将向量的每一行进行相加
return center,clusterAssment
'''
#test
dataSet = mat(loadData("C:/Users/Administrator/Desktop/k-means/testSet.txt"))
k = 4
a = kMeans(dataSet,k)
print a
''' 

三 MATLAB实现

之前用MATLAB做过一些聚类算法方面的优化,自然使用它相比python更得心应手一点。根据算法的步骤,编程实现,直接上程序:

%%%K-means

clear all
clc %% 构造随机数据
mu1=[0 0 0];
S1=[0.23 0 0;0 0.87 0;0 0 0.56];
data1=mvnrnd(mu1,S1,100); %产生高斯分布数据 %%第二类数据
mu2=[1.25 1.25 1.25];
S2=[0.23 0 0;0 0.87 0;0 0 0.56];
data2=mvnrnd(mu2,S2,100); %第三个类数据
mu3=[-1.25 1.25 -1.25];
S3=[0.23 0 0;0 0.87 0;0 0 0.56];
data3=mvnrnd(mu3,S3,100); mu4=[1.5 1.5 1.5];
S4=[0.23 0 0;0 0.87 0;0 0 0.56];
data4 =mvnrnd(mu4,S4,100); %显示数据
figure;
plot3(data1(:,1),data1(:,2),data1(:,3),'+');
title('原始数据');
hold on
plot3(data2(:,1),data2(:,2),data2(:,3),'r+');
plot3(data3(:,1),data3(:,2),data3(:,3),'g+');
plot3(data4(:,1),data4(:,2),data3(:,3),'y+');
grid on; data=[data1;data2;data3;data4];
[row,col] = size(data);
K = 4;
max_iter = 300;%%迭代次数
min_impro = 0.1;%%%%最小步长
display = 1;%%%判定条件
center = zeros(K,col);
U = zeros(K,col);
%% 初始化聚类中心
mi = zeros(col,1);
ma = zeros(col,1);
for i = 1:col
mi(i,1) = min(data(:,i));
ma(i,1) = max(data(:,i));
center(:,i) = ma(i,1) - (ma(i,1) - mi(i,1)) * rand(K,1);
end %% 开始迭代
for o = 1:max_iter
%% 计算欧氏距离,用norm函数
for i = 1:K
dist{i} = [];
for j = 1:row
dist{i} = [dist{i};data(j,:) - center(i,:)];
end
end minDis = zeros(row,K);
for i = 1:row
tem = [];
for j = 1:K
tem = [tem norm(dist{j}(i,:))];
end
[nmin,index] = min(tem);
minDis(i,index) = norm(dist{index}(i,:));
end %% 更新聚类中心
for i = 1:K
for j = 1:col
U(i,j) = sum(minDis(:,i).*data(:,j)) / sum(minDis(:,i));
end
end %% 判定
if display
end
if o >1,
if max(abs(U - center)) < min_impro;
break;
else
center = U;
end
end
end %% 返回所属的类别
class = [];
for i = 1:row
dist = [];
for j = 1:K
dist = [dist norm(data(i,:) - U(j,:))];
end
[nmin,index] = min(dist);
class = [class;data(i,:) index];
end %% 显示最后结果
[m,n] = size(class);
figure;
title('聚类结果');
hold on;
for i=1:row
if class(i,4)==1
plot3(class(i,1),class(i,2),class(i,3),'ro');
elseif class(i,4)==2
plot3(class(i,1),class(i,2),class(i,3),'go');
elseif class(i,4) == 3
plot3(class(i,1),class(i,2),class(i,3),'bo');
else
plot3(class(i,1),class(i,2),class(i,3),'yo');
end
end
grid on;

最终的结果如下图5和图6:

图5 原始数据

   图6 聚类结果

总结:在这次程序的调试中,其实出现的问题还是蛮多的,相似度指标依旧选用的是欧氏距离。在之前,一直是按照公式直接计算的,可欧氏距离其实就是2范数啊,2范数属于酉不变范数,因此矩阵的2范数就是矩阵的最大奇异值,在求解过程中可以直接采用norm函数简化。

上图中的结果可以清晰的看到算法具有一定的聚类效果,要进一步验证的话,可以采取MCR或者NMI和ARI这些常用的准则进行衡量聚类结果的优劣,在此我选取MCR进行验证,代码如下:

%% 采用MCR判定聚类效果
B = class(:,4);
B = reshape(B,1,row);
A = [ones(1,100),2 * ones(1,100),3 *ones(1,100),4 * ones(1,100)]; sum = 0;
for i = 1:row
if ( A(1,i) ~= B(1,i))
sum = sum + 1;
end
end
MCR = sum / row;
fprintf('MCR = %d\n',MCR);

多次计算平均求得的MCR= 0.53,表明误分率还是蛮大的,聚类效果并不是很理想,究其原因:虽然算法收敛,但算法只是收敛到了局部最小值,而并非全局最小值,所以可以引入二分K-均值对算法进行优化。

除此之外,FCM算法在一定程度上也是对算法的一个优化吧。

进而导入UCI数据库中的wine数据进行测试,结果甚是不理想,至于原因吧,算法本身的性能是占一部分的,还有可能是数据的维数相对较多......在此我也不敢妄加猜测,之后慢慢验证吧......

K-均值聚类(K-means)算法的更多相关文章

  1. 聚类之K均值聚类和EM算法

    这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...

  2. K均值聚类

    聚类(cluster)与分类的不同之处在于, 分类算法训练过程中样本所属的分类是已知的属监督学习. 而聚类算法不需要带有分类的训练数据,而是根据样本特征的相似性将其分为几类,又称为无监督分类. K均值 ...

  3. 探索sklearn | K均值聚类

    1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...

  4. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  5. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  6. (ZT)算法杂货铺——k均值聚类(K-means)

    https://www.cnblogs.com/leoo2sk/category/273456.html 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先 ...

  7. 机器学习算法与Python实践之(六)二分k均值聚类

    http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http ...

  8. k均值聚类算法原理和(TensorFlow)实现

    顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...

  9. K均值聚类算法

    k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个 ...

  10. 机器学习实战---K均值聚类算法

    一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ...

随机推荐

  1. java中关于二进制的初步。

    两个int型和一个long型的转换: long now=1368257088802L;                  int low = (int) (0xFFFFFFFFL & now) ...

  2. thinkphp隐藏模块实例

    1.项目中若要隐藏模块的做法 2.配置如下: <?php return array( //'配置项'=>'配置值' 'MODULE_ALLOW_LIST' => array ('Ho ...

  3. Js注释和对象

    1.注释 单行: //注释内容 console.log('加油~');//在控制台输出一条信息: 多行: /*注释内容*/: 2.对象 1)对象是一个复合值,是根据某种引用类型创建出来的实例. 2)常 ...

  4. 【LeetCode】Validate Binary Search Tree 二叉查找树的推断

    题目: Given a binary tree, determine if it is a valid binary search tree (BST). 知识点:BST的特点: 1.一个节点的左子树 ...

  5. c++ json cpp

    一 编译链接 1 在相应官网下载jsoncpp 2 解压得到jsoncpp-src-0.5.0文件 3 打开jsoncpp-src-0.5.0 -> makefiles -> vs71 - ...

  6. 在Office上怎么用MathType编辑公式

    随着无纸化的办公程序越来越深入普及到社会的各个层面,很多资料都是电子档.从前手写的内容全都转换到了电脑上.用Office办公时,有一个很大的问题,那就是其中的公式要怎么编辑? 从前用手写毫无困难,什么 ...

  7. 判断字符串是否为json字符串

    public static class JsonSplitExtention { public static bool IsJson(this string json) { return JsonSp ...

  8. 浅谈无缓存I/O操作和标准I/O文件操作差别

    首先,先略微了解系统调用的概念:        系统调用,英文名system call,每一个操作系统都在内核里有一些内建的函数库,这些函数能够用来完毕一些系统系统调用把应用程序的请求传给内核,调用对 ...

  9. 【SSH进阶之路】Hibernate映射——一对一双向关联映射(六)

    上篇博文[SSH进阶之路]Hibernate映射--一对一单向关联映射(五),我们介绍了一对一的单向关联映射,单向是指仅仅能从人(Person)这端载入身份证端(IdCard),可是反过来.不能从身份 ...

  10. 开源 免费 java CMS - FreeCMS1.9 移动APP生成网站列表数据

    项目地址:http://www.freeteam.cn/ 生成网站列表数据 提取同意移动APP訪问的网站列表,生成json数据到/mobile/index.html页面. 从左側管理菜单点击生成网站列 ...