UESTC 485 Game(康托展开,bfs打表)
Game
Time Limit: 4000/2000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
Submit Status
title
Today I want to introduce an interesting game to you. Like eight puzzle, it is a square board with 99 positions, but it filled by 99 numbered tiles. There is only one type of valid move, which is to rotate one row or column. That is, three tiles in a row or column are moved towards the head by one tile and the head tile is moved to the end of the row or column. So it has 1212 different moves just as the picture left. The objective in the game is to begin with an arbitrary configuration of tiles, and move them so as to get the numbered tiles arranged as the target configuration.
title
Now the question is to calculate the minimum steps required from the initial configuration to the final configuration. Note that the initial configuration is filled with a permutation of 11 to 99, but the final configuration is filled with numbers and * (which can be any number).
Input
The first line of input contains an integer TT (T≤1000T≤1000), which is the number of data sets that follow.
There are 66 lines in each data set. The first three lines give the initial configuration and the next three lines give the final configuration.
Output
For every test case, you should output Case #k: first, where kk indicates the case number and starts at 11. Then the fewest steps needed. If he can’t move to the end, just output No Solution! (without quotes).
Sample input and output
Sample Input Sample Output
2
1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 9 8
1 2 3
4 5 6
7 8 9
8 * 9
5 3 7
2 * *
Case #1: No Solution!
Case #2: 7
利用康托展开进行bfs预处理。题目给的一个起始的九宫格,和一个目标的九宫格。 不能直接用目标的九宫格去找起始的九宫格,会超时,应该根据把起始九宫格当作
1 2 3
4 5 6
7 8 9
然后确定目标九宫格是怎么样的,这样就可以直接用之前打的表了。预处理就是处理1 2 3 4 5 6 7 8 9到每种九宫格的步数
关于康托展开,给出一篇博文吧
http://blog.csdn.net/dacc123/article/details/50952079
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <queue>
using namespace std;
struct Node
{
int a[5][5];
int sta;
};
queue<Node> q;
int b[10];
int fac[10];
int vis[400000];
int pre[400000];
int ans;
int f1[10];
int f2[10];
int tran[10];
char ch[10];
bool used[10];
Node cyk;
void facfun()
{
fac[0]=1;
for(int i=1;i<=9;i++)
{
fac[i]=i*fac[i-1];
}
}
int kt(Node q)
{
int cnt=0;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
b[++cnt]=q.a[i][j];
int sum=0,num=0;
for(int i=1;i<=9;i++)
{
num=0;
for(int j=i+1;j<=9;j++)
{
if(b[i]>b[j])
num++;
}
sum+=num*fac[9-i];
}
return sum;
}
void bfs(Node t)
{
q.push(t);
vis[t.sta]=1;
pre[t.sta]=0;
while(!q.empty())
{
Node term=q.front();
q.pop();
for(int i=1;i<=12;i++)
{
Node temp=term;
if(i<=3)
{
temp.a[i][1]=term.a[i][3];
temp.a[i][2]=term.a[i][1];
temp.a[i][3]=term.a[i][2];
}
else if(i>3&&i<=6)
{
temp.a[i-3][1]=term.a[i-3][2];
temp.a[i-3][2]=term.a[i-3][3];
temp.a[i-3][3]=term.a[i-3][1];
}
else if(i>6&&i<=9)
{
temp.a[1][i-6]=term.a[3][i-6];
temp.a[2][i-6]=term.a[1][i-6];
temp.a[3][i-6]=term.a[2][i-6];
}
else if(i>9&&i<=12)
{
temp.a[1][i-9]=term.a[2][i-9];
temp.a[2][i-9]=term.a[3][i-9];
temp.a[3][i-9]=term.a[1][i-9];
}
int state=kt(temp);
if(vis[state])
continue;
temp.sta=state;
vis[state]=1;
pre[state]=pre[term.sta]+1;
q.push(temp);
}
}
}
void init()
{
memset(vis,0,sizeof(vis));
memset(pre,-1,sizeof(pre));
facfun();
Node st;int cnt=0;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
st.a[i][j]=++cnt;
st.sta=0;
bfs(st);
}
int anspos;
void dfs(int i)
{
if(i==10)
{
/*for(int p=1;p<=3;p++)
{
for(int k=1;k<=3;k++)
{
cout<<cyk.a[p][k]<<" ";
}
cout<<endl;
}*/
int c=pre[kt(cyk)];
if(c==-1) return;
ans=min(ans,c);return;
}
if(f2[i]==0)
{
for(int j=1;j<=9;j++)
{
if(!used[j])
{
used[j]=true;
int y=i%3,x;
if(y==0){x=i/3;y=3;}
else {x=i/3+1;}
cyk.a[x][y]=j;
dfs(i+1);
used[j]=false;
}
}
}
else
{
int y=i%3,x;
if(y==0){x=i/3;y=3;}
else {x=i/3+1;}
cyk.a[x][y]=f2[i];
dfs(i+1);
}
}
int main()
{
int t;
scanf("%d",&t);
init();
int cas=0;
while(t--)
{
memset(used,0,sizeof(used));
for(int i=1;i<=9;i++)
{
scanf("%d",&f1[i]);
tran[f1[i]]=i;
}
for(int i=1;i<=9;i++)
{
scanf("%s",ch);
f2[i]=ch[0]-'0';
if(f2[i]>=1&&f2[i]<=9)
f2[i]=tran[f2[i]],used[f2[i]]=true;
else
f2[i]=0;
}
ans=1000000;
dfs(1);
if(ans>=1000000)
printf("Case #%d: No Solution!\n",++cas);
else
printf("Case #%d: %d\n",++cas,ans);
}
return 0;
}
UESTC 485 Game(康托展开,bfs打表)的更多相关文章
- [HDOJ1043]Eight(康托展开 BFS 打表)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 八数码问题,因为固定了位置所以以目标位置开始搜索,把所有情况(相当于一个排列)都记录下来,用康托 ...
- HDU 3567 Eight II 打表,康托展开,bfs,g++提交可过c++不可过 难度:3
http://acm.hdu.edu.cn/showproblem.php?pid=3567 相比Eight,似乎只是把目标状态由确定的改成不确定的,但是康托展开+曼哈顿为h值的A*和IDA*都不过, ...
- HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special ...
- HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special ...
- HDU 1430 魔板(康托展开+BFS+预处理)
魔板 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- hdu1043Eight (经典的八数码)(康托展开+BFS)
建议先学会用康托展开:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description The 15-puzzle ...
- poj1077(康托展开+bfs+记忆路径)
题意:就是说,给出一个三行三列的数组,其中元素为1--8和x,例如: 1 2 3 现在,需要你把它变成:1 2 3 要的最少步数的移动方案.可以右移r,左移l,上移u,下移dx 4 6 4 5 67 ...
- HDU1043 八数码(BFS + 打表)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 , 康托展开 + BFS + 打表. 经典八数码问题,传说此题不做人生不完整,关于八数码的八境界 ...
- 转换地图 (康托展开+预处理+BFS)
Problem Description 在小白成功的通过了第一轮面试后,他来到了第二轮面试.面试的题目有点难度了,为了考核你的思维能量,面试官给你一副(2x4)的初态地图,然后在给你一副(2x4)的终 ...
随机推荐
- 使用Ultra Librarian转换芯片的Altium Designer封装格式
第一步:找到对应芯片的CAD文件,以OPA350为例: http://www.ti.com/product/opa350 RE: 使用Ultra Librarian转换TI芯片的Altium De ...
- maven 打包可执行jar的两种方法
1.修改pom.xml增加如下内容 <build> <pluginManagement> <plugins> <plugin> <groupId& ...
- JQuery元素控制方法汇总
1.在元素内部追加内容 $("元素名").append(content) 2.在元素中的不同位置追加内容 $("元素名").appendTo(content) ...
- git 分支的创建、合并、删除
基本概念与命令 分支(branch):每次提交,Git都把提交的内容串成一条时间线,这条时间线就是一个分支 . git 分支的创建 git branch branchName git ...
- 详细分析css float 属性以及position:absolute 的区别
1.float 属性定义元素在哪个方向浮动.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级框,而不论它本身是何种元素.div一个典型的块 ...
- MFC ADO数据库操作
MFC ADO数据库操作 - 延陵小明 - CSDN博客 http://blog.csdn.net/guoming0000/article/details/7280070/ 内容比较乱,作为草稿,对现 ...
- 从源代码来理解ArrayList和LinkedList差别
从源代码理解ArrayList和LinkedList差别 ArrayList ArrayList默认容量为10,实质是一个数组用于存放元素,size表示ArrayList所包括的元素个数. Array ...
- .net多线程,线程异步,线程同步,并发问题---1---ShinePans
申请线程,输出线程状态: using System; using System.Collections.Generic; using System.Linq; using System.Text; u ...
- 如何根据select选择的值反查option的属性
有时候select已经被选中了,想知道这个选中option的属性又该如何处理呢? 我这里提供一种粗暴的方式 <!DOCTYPE HTML> <html lang="en-U ...
- Linux 任务计划:crontab
(1) 什么是任务计划:也就是设置服务器在某个指定的时间执行某个指定的任务,比如执行一个命令,或执行一个脚本(2) Linux 使用 cron 服务来制定任务计划,cron 是服务名称,crond 是 ...