【算法乱讲】BSGS
Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that BL== N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587 显然,这是一道bsgs的裸题
那么bsgs是什么玩意呢,
我们先玩一玩式子
令 m=ceil(sqrt(p))设a^(m*i+j)=b(mod p) 显然 a^j*a^(m*i)=b(mod p)
a^j=b*a^(-m*i) (mod p) 因此,我们预处理所有可能的a^j丢进哈希表中然后我们枚举i,
看看有没有可能对应的j所以我们的算法时间复杂度为O(n^0.5)
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
using namespace std;
typedef long long ll;
struct hash_set{
ll v[];
int next[],g[],w[],tot;
il void clear(){
memset(g,false,sizeof(g));tot=;
}
il void insert(ll h,int f){
v[++tot]=h;
w[tot]=f;
next[tot]=g[h%];
g[h%]=tot;
}
il int find(ll h){
for(re int i=g[h%];i;i=next[i])
if(h==v[i]) return w[i];
return -;
}
} p;
ll A,B,P,m,t,s;
il ll ksm(re ll base,re ll pow){
if(pow<){
cout<<"-1";exit();
}
ll ans=;
for(;pow;pow>>=){
if(pow&) ans=ans*base%P;
base=base*base%P;
}
return ans;
}
il ll rev(re ll a){
return ksm(a,P-);
}
il void init(){
p.clear();
m=ceil(sqrt(P));t=;
for(int i=;i<m;i++){
if(p.find(t)<) p.insert(t,i);
t=t*A%P;
}
//cout<<endl;
for(int i=,l;i<=P/m;i++){
t=rev(ksm(A,m*i));
// cout<<t<<" "<<m*i<<" ";
s=t*B%P;
// cout<<s<<endl;
l=p.find(s);
if(l>=){
printf("%lld\n",m*i+l);
return;
}
}
printf("no solution\n");
}
int main(){
while(scanf("%lld%lld%lld",&P,&A,&B)!=EOF){
init();
}
return ;
}
【算法乱讲】BSGS的更多相关文章
- 学了两天 react,乱讲一下学习思路,顺便弄了一个脚手架
之前一直用 vue 做一些小项目,最近接触了一个项目是用 react 做前端,虽然本身是做后端开发的,但是前端还是要了解一点的. 现在的项目基本上都是前后端分离的,后端就先不提了.前端的框架也是层出不 ...
- javascript洗牌算法 乱序算法 面试题
1.2种方案代码 <!DOCTYPE html> <html lang="zh"> <head> <meta charset=" ...
- 多项式&生成函数(~~乱讲~~)
多项式 多项式乘法 FFT,NTT,MTT不是前置知识吗?随便学一下就好了(虽然我到现在还是不会MTT,exlucas也不会用) FTT总结 NTT总结 泰勒展开 如果一个多项式\(f(x)\)在\( ...
- KMP算法细讲(豁然开朗)
一.KMP算法是如何针对传统算法修改的 用模式串P去匹配字符串S,在i=6,j=4时发生失配: ---------------------------------------------------- ...
- 【模板】【数论】二次剩余Cipolla算法,离散对数BSGS 算法
Cipolla LL ksm(LL k,LL n) { LL s=1; for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo; return s; } n ...
- 「算法笔记」BSGS 与 exBSGS
一.离散对数 给定 \(a,b,m\),存在一个 \(x\),使得 \(\displaystyle a^x\equiv b\pmod m\) 则称 \(x\) 为 \(b\) 在模 \(m\) 意义下 ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- 大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)
原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘 ...
- ELFhash - 优秀的字符串哈希算法
ELFhash - 优秀的字符串哈希算法 2016年10月29日 22:12:37 阅读数:6440更多 个人分类: 算法杂论算法精讲数据结构 所属专栏: 算法与数据结构 版权声明:本文为博主原创 ...
随机推荐
- 跟浩哥学自动化测试Selenium -- Selenium简介 (1)
Selenium 简介 Selenium 是一款开源的web自动化测试工具,用来模拟对浏览器的操作(主要是对页面元素的操作),简单来讲,其实就是一个jar包.Selenium早期的版本比如1.0市场占 ...
- JAVA Date、String、Calendar类型之间的转化
1.Calendar 转化 String //获取当前时间的具体情况,如年,月,日,week,date,分,秒等 Calendar calendat = Calendar.getInstance(); ...
- vim神器(学习笔记)
#本文并非原创,属于本人学习中的记录笔记或是转存笔记,如果涉及到哪位高人的创作权益,敬请海涵! Vim 是一个上古神器,本篇文章主要持续总结使用 Vim 的过程中不得不了解的一些指令和注意事项,以及持 ...
- cmake-cmake.1-3.11.4机翻
指数 下一个 | 上一个 | CMake » git的阶段 git的主 最新发布的 3.13 3.12 3.11.4 3.10 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 ...
- DX孟虎点评新兴市场:巴西俄罗斯火爆背后
[亿邦动力网讯]4月3日消息,在第九届中国中小企业电子商务大会暨2014中国(河南)跨境贸易电子商务峰会上,DX公司CEO孟虎对新兴市场做了详细的分析,指出在当今的跨境电商环境下,北美.西欧作为电商成 ...
- 大前端-全栈-node+easyui+express+vue+es6+webpack+react
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 视频来源:https://www.bil ...
- 卡特兰数(Catalan)及其应用
卡特兰数 大佬博客https://blog.csdn.net/doc_sgl/article/details/8880468 卡特兰数是组合数学中一个常出现在各种计数问题中出现的数列. 卡特兰数前几项 ...
- 2018-2019-20172329 《Java软件结构与数据结构》第四周学习总结
2018-2019-20172329 <Java软件结构与数据结构>第四周学习总结 经过这样一个国庆节的假期,心中只有一个想法,这个国庆假期放的,不如不放呢!! 教材学习内容总结 < ...
- CS小分队第二阶段冲刺站立会议(5月26日)
昨天成果:对扫雷进行了全面的优化,增加了特色皮肤,为其添加了游戏音效,并且做出了换肤的接口. 今日计划:应队友要求对抽号倒计时器进行分离,修改界面结构以便美化. 遇到问题:扫雷的界面美化比较困难,自动 ...
- 进阶系列(9)——linq
一.揭开linq的神秘面纱(一)概述 LINQ的全称是Language Integrated Query,中文译成“语言集成查询”.LINQ作为一种查询技术,首先要解决数据源的封装,大致使用了三大组 ...