【算法乱讲】BSGS
Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that BL== N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587 显然,这是一道bsgs的裸题
那么bsgs是什么玩意呢,
我们先玩一玩式子
令 m=ceil(sqrt(p))设a^(m*i+j)=b(mod p) 显然 a^j*a^(m*i)=b(mod p)
a^j=b*a^(-m*i) (mod p) 因此,我们预处理所有可能的a^j丢进哈希表中然后我们枚举i,
看看有没有可能对应的j所以我们的算法时间复杂度为O(n^0.5)
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
using namespace std;
typedef long long ll;
struct hash_set{
ll v[];
int next[],g[],w[],tot;
il void clear(){
memset(g,false,sizeof(g));tot=;
}
il void insert(ll h,int f){
v[++tot]=h;
w[tot]=f;
next[tot]=g[h%];
g[h%]=tot;
}
il int find(ll h){
for(re int i=g[h%];i;i=next[i])
if(h==v[i]) return w[i];
return -;
}
} p;
ll A,B,P,m,t,s;
il ll ksm(re ll base,re ll pow){
if(pow<){
cout<<"-1";exit();
}
ll ans=;
for(;pow;pow>>=){
if(pow&) ans=ans*base%P;
base=base*base%P;
}
return ans;
}
il ll rev(re ll a){
return ksm(a,P-);
}
il void init(){
p.clear();
m=ceil(sqrt(P));t=;
for(int i=;i<m;i++){
if(p.find(t)<) p.insert(t,i);
t=t*A%P;
}
//cout<<endl;
for(int i=,l;i<=P/m;i++){
t=rev(ksm(A,m*i));
// cout<<t<<" "<<m*i<<" ";
s=t*B%P;
// cout<<s<<endl;
l=p.find(s);
if(l>=){
printf("%lld\n",m*i+l);
return;
}
}
printf("no solution\n");
}
int main(){
while(scanf("%lld%lld%lld",&P,&A,&B)!=EOF){
init();
}
return ;
}
【算法乱讲】BSGS的更多相关文章
- 学了两天 react,乱讲一下学习思路,顺便弄了一个脚手架
之前一直用 vue 做一些小项目,最近接触了一个项目是用 react 做前端,虽然本身是做后端开发的,但是前端还是要了解一点的. 现在的项目基本上都是前后端分离的,后端就先不提了.前端的框架也是层出不 ...
- javascript洗牌算法 乱序算法 面试题
1.2种方案代码 <!DOCTYPE html> <html lang="zh"> <head> <meta charset=" ...
- 多项式&生成函数(~~乱讲~~)
多项式 多项式乘法 FFT,NTT,MTT不是前置知识吗?随便学一下就好了(虽然我到现在还是不会MTT,exlucas也不会用) FTT总结 NTT总结 泰勒展开 如果一个多项式\(f(x)\)在\( ...
- KMP算法细讲(豁然开朗)
一.KMP算法是如何针对传统算法修改的 用模式串P去匹配字符串S,在i=6,j=4时发生失配: ---------------------------------------------------- ...
- 【模板】【数论】二次剩余Cipolla算法,离散对数BSGS 算法
Cipolla LL ksm(LL k,LL n) { LL s=1; for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo; return s; } n ...
- 「算法笔记」BSGS 与 exBSGS
一.离散对数 给定 \(a,b,m\),存在一个 \(x\),使得 \(\displaystyle a^x\equiv b\pmod m\) 则称 \(x\) 为 \(b\) 在模 \(m\) 意义下 ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- 大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)
原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘 ...
- ELFhash - 优秀的字符串哈希算法
ELFhash - 优秀的字符串哈希算法 2016年10月29日 22:12:37 阅读数:6440更多 个人分类: 算法杂论算法精讲数据结构 所属专栏: 算法与数据结构 版权声明:本文为博主原创 ...
随机推荐
- R的数据库访问-MySQL
目录 1 RMySQL 2 环境与安装 3 建立通信 1 RMySQL R作为一款数据分析的工具,,而MySQL是一款常用的开源关系型数据库软件,非常适用于中小型的数据存储,当二者相互结合时才能爆发出 ...
- bilibili携手WeTest,保障视频类应用优质适配体验
WeTest 导读 中国移动视频用户规模越来越大,各类移动视频APP也百家争鸣, B站作为国内知名的年轻人文化社区,bilibili在推出移动端时,除了坚持自身的独特定位以外,对其APP的质量也十分重 ...
- 现有新的iOS更新可用,请从iOS12 beta版进行更新.解决方案
问题描述: ios系统一直弹出“现有新的iOS更新可用,请从iOS12 beta版进行更新”的提示,很烦的. 应该只出现在安装测试版ios12的手机上. 解决方案: 删除描述文件无法解决. 有网友机制 ...
- CF刷题-Codeforces Round #481-D. Almost Arithmetic Progression
题目链接:https://codeforces.com/contest/978/problem/D 题解: 题目的大意就是:这组序列能否组成等差数列?一旦构成等差数列,等差数列的公差必定确定,而且,对 ...
- 阿里IPO法律咨询费达1580万美元 为Facebook六倍
据路透社报道,阿里巴巴集团周五在 IPO (首次公开招股)更新文件中披露,将向美国盛信律师事务所(Simpson Thacher)以及其他为 IPO 提供咨询服务的律师事务所支付 1580 万美元的法 ...
- 第九周个人PSP
11.10--11.16本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) ...
- .net web 应用程序C#
简介 开发环境:VS2015 ASP.NET:可以开发出几乎所有运行在Windows上的应用程序:.NET是一种架构,一种新的API:引入程序集代替DLL: ADO.NET:一组.NET组件提供对数据 ...
- 扩展欧几里德 SGU 106
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106 题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...
- HDU 5159 Card
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5159 题解: 考虑没一个数的贡献,一个数一次都不出现的次数是(x-1)^b,而总的排列次数是x^b, ...
- vs调试iisExpress经常卡死
最近调试一个项目时,电脑经常卡死,不得不强制重启,一直不知道iisExpress为何卡死的. 想了很多办法,强制删除bin里面的文件,结果不行: 企图删除iisExpress虚拟目录中的文件也不行: ...