【BZOJ3105】新Nim游戏(线性基)
【BZOJ3105】新Nim游戏(线性基)
题面
Description
传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
Input
第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。
Output
输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。
Sample Input
6
5 5 6 6 5 5
Sample Output
21
HINT
k<=100
题解
很显然,就是让你选择和尽可能小的数,使得剩下的数的任意子集的异或和不为\(0\)
排序之后,依次插入线性基中贪心即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct xxj
{
int p[30];
void insert(int x)
{
for(int i=29;~i;--i)
{
if(!(x&(1<<i)))continue;
if(!p[i]){p[i]=x;break;}
x^=p[i];
}
}
int Query(int x)
{
for(int i=29;~i;--i)
{
if(!(x&(1<<i)))continue;
x^=p[i];
}
return x;
}
}G;
int n,a[500];
ll ans=0;
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
sort(&a[1],&a[n+1]);
for(int i=n;i;--i)
if(!G.Query(a[i]))ans+=a[i];
else G.insert(a[i]);
printf("%lld\n",ans);
return 0;
}
【BZOJ3105】新Nim游戏(线性基)的更多相关文章
- BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- [CQOI2013]新Nim游戏 线性基
题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...
- BZOJ 3105: [cqoi2013]新Nim游戏(线性基)
解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)
题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...
- BZOJ-3105: 新Nim游戏 (nim博弈&线性基)
pro: 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- BZOJ3105 新Nim游戏 【拟阵】
题目分析: 我不知道啥是拟阵啊,但有大佬说线性基相关的都是拟阵,所以直接贪心做了. 题目代码: #include<bits/stdc++.h> using namespace std; ; ...
- 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基
[BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...
随机推荐
- [bzoj1500][luogu2042][cogs339][codevs1758]维修数列(维护数列)
先给自己立一个flag 我希望上午能写完 再立一个flag 我希望下午能写完. 再立一个flag 我希望晚上能写完... 我终于A了... 6700+ms...(6728) 我成功地立了3个flag. ...
- 《Flutter实战》开源电子书
<Flutter实战>开源电子书 <Flutter实战> 开源了,本书为 Flutter中文网开源电子书项目,本书系统介绍了Flutter技术的各个方面,本书属于原创书籍(并非 ...
- macOS中启动Tomcat提示Cannot find ./catalina.sh
首先查看Tomcat目录下是否存在catalina.sh,如果文件不存在,文件丢失,最好的方式是重装Tomcat Tomcat官网:http://tomcat.apache.org/ 如果文件存在,那 ...
- Java的安装与配置
安装JAVA 下载JAVA JDK安装包,JDK是Java Development Kit的缩写,即开发工具包,里面包含了平时用户用到的JRE,也就是Java Runtime Enviroment运行 ...
- C、C++字符操作归总
1)字符串操作 strcpy(p, p1) 复制字符串 strncpy(p, p1, n) 复制指定长度字符串 strcat(p, p1) 附加字符串 strncat(p, p1, n) 附加指定长度 ...
- python 的入门
时光匆匆,大一的时间过的很快,从大一上学期学的c开始,就感觉出c的结构很复杂,但是不可否认,学习c和汇编等涉及到系统底层知识才会有可能开发出属于自己知识产权的东西,然而,python以其简约性,丰富的 ...
- hadoop之Shuffle和Sort
MapRduce保证reducer的输入是按照key进行排过序的,原因和归并排序有关,在reducer接收到不同的mapper输出的有序数据后,需要再次进行排序,然后是分组排序,如果mapper输出的 ...
- Redis 指令
一个key可以存放将近40亿条数据 选择库 select 2 (代表选择第三个库) 增加key set db_number 11 删除key del key 获取值 get db_n ...
- python struct详解
转载:https://www.cnblogs.com/gala/archive/2011/09/22/2184801.html 有的时候需要用python处理二进制数据,比如,存取文件,socket操 ...
- Right-BICEP单元测试
一.测试方法:Right-BICEP Right-结果是否正确? B-是否所有的边界条件都是正确的? I-能查一下反向关联吗? C-能用其他手段交叉检查一下结果吗? E-你是否可以强制错误条件发生? ...