机器学习—集成学习(GBDT)
一、原理部分:
图片形式~
二、sklearn实现:
可以看看这个:https://blog.csdn.net/han_xiaoyang/article/details/52663170
1、分类:
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
import numpy as np digits = load_digits()
x_data = digits.data
y_data = digits.target x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,random_state = 1)
#第一轮,确定n=90
gbdt = GradientBoostingClassifier()
model_gbdt1 = GridSearchCV(gbdt,param_grid=({'n_estimators':np.arange(50,200,10)}),cv=5)
model_gbdt1.fit(x_train,y_train)
print(model_gbdt1.best_params_)
y_hat1 = model_gbdt1.predict(x_test)
print(accuracy_score(y_hat1,y_test)) #第二轮
gbdt = GradientBoostingClassifier(n_estimators=90)
model_gbdt2 = GridSearchCV(gbdt,param_grid=({'learning_rate':[0.01,0.03]}),cv=5)
model_gbdt2.fit(x_train,y_train)
print(model_gbdt2.best_params_)
y_hat2 = model_gbdt2.predict(x_test)
print(accuracy_score(y_hat2,y_test)) #第三轮,确定层数:2
gbdt = GradientBoostingClassifier(n_estimators=90,learning_rate=0.3,subsample=0.8)
model_gbdt3 = GridSearchCV(gbdt,param_grid=({'max_depth':[2,4]}),cv=5)
model_gbdt3.fit(x_train,y_train)
print(model_gbdt3.best_params_)
y_hat3 = model_gbdt3.predict(x_test)
print(accuracy_score(y_hat3,y_test)) #第四轮,确定降采样
gbdt = GradientBoostingClassifier(n_estimators=90,learning_rate=0.3,max_depth=2)
model_gbdt4 = GridSearchCV(gbdt,param_grid=({'subsample':[0.8,0.9]}),cv=5)
model_gbdt4.fit(x_train,y_train)
print(model_gbdt4.best_params_)
y_hat4 = model_gbdt4.predict(x_test)
print(accuracy_score(y_hat4,y_test))
最后结果,结果也是很好,跟svm差不多吧。可能是我调参不够好,不过暂时不纠结这个
{'subsample': 0.8}
0.986666666667
机器学习—集成学习(GBDT)的更多相关文章
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 机器学习--集成学习(Ensemble Learning)
一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好) ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- python大战机器学习——集成学习
集成学习是通过构建并结合多个学习器来完成学习任务.其工作流程为: 1)先产生一组“个体学习器”.在分类问题中,个体学习器也称为基类分类器 2)再使用某种策略将它们结合起来. 通常使用一种或者多种已有的 ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
随机推荐
- win7 安装 node-sass报错
由于国内网络问题,所以会导致下载node-sass二进制包失败 只需要在 ~/.npmrc(当前用户家目录下)添加下面一行: sass_binary_site=https://npm.taobao.o ...
- python3调用阿里云短信服务
#!/usr/bin/env python#-*- coding:utf-8 -*-#Author:lzd import uuidimport datetimeimport hmacimport ba ...
- Executors中的几种线程调用方式
一.Executors是java5以后提供的一套api,使用跟上面非常方便.Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线 ...
- TNS-12535: TNS:operation timed out、TNS-00505: Operation timed out
在查看alert日志的时候发现: 1 *********************************************************************** 2 3 Fatal ...
- kettle步骤概览--清洗校验
2017年03月22日 11:01:19 阅读数:4755 前边介绍了34个子程序 关于清洗和校验的子系统包含四个: 清洗.错误处理.审计维度.排重 Kettle里没有单一的数据清洗步骤,但有很多 ...
- OpenCL 三种内存对象的使用
▶ 包括带有 CL_MEM_READ_ONLY,CL_MEM_WRITE_ONLY,CL_MEM_READ_WRITE 标识的显示拷贝(函数 clEnqueueWriteBuffer 和 clEnqu ...
- Android开发:实时处理摄像头预览帧视频------浅析PreviewCallback,onPreviewFrame,AsyncTask的综合应用(转)
原文地址:http://blog.csdn.net/yanzi1225627/article/details/8605061# 很多时候,android摄像头模块不仅预览,拍照这么简单,而是需要在预览 ...
- 116. Populating Next Right Pointers in Each Node (Tree; WFS)
Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *nex ...
- C语言字符编码处理
一.字符编码识别 1.简介 uchardet是一个开源的用于文本编码检测的C语言库,其功能模块是用C++实现的,通过一定数量的字符样本独立的分析出文本的编码,当前已经支持UTF-8/GB13080/B ...
- Chrome 扩展 Vue Devtools
Vue.js devtools是基于google chrome浏览器的一款调试vue.js应用的开发者浏览器扩展,可以在浏览器开发者工具下调试代码. 1)首先在github下载devtools源码,地 ...