二分答案+堆优Dijkstra

  • 这个题有些巧妙。
  • 首先,因为要在油量耗完之前跑到终点,所以我们可以用最短路。只要从\(s\)出发到\(t\),它的最短距离大于油量,我们就可以断定它一定走不通,直接输出\(-1\)。
  • 然后因为要求最大值最小,所以考虑二分答案。用一个数组来储存点的值从大到小的排序,然后边界范围设置 : \(L\)为\(s\)和\(t\)的中较大的拿一个的排名,\(R\)为n。为什么\(L\)要这样设置呢?因为\(s\)和\(t\)是必经的点,所以它们一定要选,所以最小值只能设为它们之间较大的一个。
  • 但是在存边的时候要注意,没有必要判重!!!因为两条路,他们连接的点可能一样,但是他们的距离不同,所以判重还会导致花费更多没必要的时间。我就是被说明给坑了。。。
  • 上代码,有不清楚的代码里面尽量写明。
#include<bits/stdc++.h>
#define clean(a,i) memset(a,i,sizeof(a))
#define ll long long
#define inl inline
#define il inl void
#define it inl int
#define ill inl ll
#define re register
#define ri re int
#define rl re ll
#define mid ((l+r)>>1)
using namespace std;
template<class T>il read(T &x) //快读
{
int f=1;char k=getchar();x=0;
for(;k>'9'||k<'0';k=getchar()) if(k=='-') f=-1;
for(;k>='0'&&k<='9';k=getchar()) x=(x<<3)+(x<<1)+k-'0';
x*=f;
}
const int MAXN = 1e4+5,MAXM= 5e4+5;
int n,m,s,t,mx,u,v,d,num_edge,head[MAXN],val[MAXN],p[MAXN],dis[MAXN],l,r; //p数组用来存每个点的权值排序后的顺序
struct Edge{
int next,to,dis;
Edge(){}
Edge(int next,int to,int dis):next(next),to(to),dis(dis){}
}edge[MAXM<<1]; //加边,无向边开两倍
il add_edge(int u,int v,int dis){
edge[++num_edge]=Edge(head[u],v,dis);head[u]=num_edge;
edge[++num_edge]=Edge(head[v],u,dis);head[v]=num_edge;
} //用结构体的生成函数写,方便又简洁
struct Node{
int dis,pos;
Node(){}
Node(int dis,int pos):dis(dis),pos(pos){}
bool operator <(const Node &t) const{
return dis>t.dis;
}
}; //用来跑Dijkstra,堆优要用
bool tr[MAXN]; //判断是否用这个点松弛过
il dijkstra(int lim){ //lim用来限制通过的点的最大权值
priority_queue<Node> q;q.push(Node(0,s));
clean(tr,0);clean(dis,0x3f);dis[s]=0; //初始化
while(!q.empty()){
Node tmp=q.top();q.pop();
ri pos=tmp.pos;
if(tr[pos]||val[pos]>lim) continue;
tr[pos]=true;
for(ri i=head[pos];i;i=edge[i].next){
if(dis[edge[i].to]>dis[pos]+edge[i].dis){
dis[edge[i].to]=dis[pos]+edge[i].dis;
if(!tr[edge[i].to]) q.push(Node(dis[edge[i].to],edge[i].to));
}
}
}
} //这个基本是堆优Dijkstra的模板,当然,在写法上可能有不同,不会的小伙伴可以去看一下 P4779 【模板】单源最短路径(标准版)
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n),read(m),read(s),read(t),read(mx); //读入
for(ri i=1;i<=n;i++) read(val[i]),p[i]=val[i];
for(ri i=1;i<=m;i++){
read(u),read(v),read(d);
if(d>mx) continue;
add_edge(u,v,d);
} //加边
sort(p+1,p+1+n); //给每个点的权值排序
dijkstra(p[n]); //先用最大的跑一遍,如果走不通,说明无解
if(dis[t]>mx){
printf("-1");
return 0;
}
for(ri i=1;i<=n;i++) if(p[i]==max(val[s],val[t])) {l=i;break;} //确定l的取值
r=n;
while(l<r){ //二分答案
dijkstra(p[mid]);
if(dis[t]>mx) l=mid+1;
else r=mid;
}
printf("%d",p[l]); //输出
return 0;
}
  • 愉快收工!![]( ̄▽ ̄)*

顺便安利一下自己的博客 虽然还几乎啥都没有

Luogu P1951 收费站_NOI导刊2009提高(2)的更多相关文章

  1. luogu P1951 收费站_NOI导刊2009提高(2) |二分答案+最短路

    题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,-,n. 这个国家的政府修建了m条双向的公路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油. 开车每 ...

  2. Luogu P1951 收费站_NOI导刊2009提高(2) 二分 最短路

    思路:二分+最短路 提交:1次 题解: 二分最后的答案. $ck()$: 对于每次的答案$md$跑$s,t$的最短路,但是不让$c[u]>md$的点去松弛别的边,即保证最短路不经过这个点.最后$ ...

  3. 洛谷 P1951 收费站_NOI导刊2009提高(2) 最短路+二分

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 AC代码 总结 题面 题目链接 P1951 收费站_NOI导刊2009提高(2) 其 ...

  4. 洛谷——P1951 收费站_NOI导刊2009提高(2)

    https://www.luogu.org/problem/show?pid=1951 题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,…,n. 这个国家的政府修建了m条双向的公路.每条公 ...

  5. 洛谷 P1951 收费站_NOI导刊2009提高(2)

    题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,…,n. 这个国家的政府修建了m条双向的公路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油. 开车每 ...

  6. [洛谷P1951]收费站_NOI导刊2009提高(2)

    题目大意:有一张$n$个点$m$条边的图,每个点有一个权值$w_i$,有边权,询问从$S$到$T$的路径中,边权和小于$s$,且$\max\limits_{路径经过k}\{w_i\}$最小,输出这个最 ...

  7. 题解 P1951 【收费站_NOI导刊2009提高(2)】

    查看原题请戳这里 核心思路 题目让求最大费用的最小值,很显然这道题可以二分,于是我们可以二分花费的最大值. check函数 那么,我们该怎么写check函数呢? 我们可以删去费用大于mid的点以及与其 ...

  8. 洛谷1462(重题1951) 通往奥格瑞玛的道路(收费站_NOI导刊2009提高(2))

    1462原题链接 1951原题链接 显然答案有单调性,所以可以二分答案,用\(SPFA\)或\(dijkstra\)跑最短路来判断是否可行即可. 注意起点也要收费,\(1462\)数据较水,我一开始没 ...

  9. 洛谷 P1952 火星上的加法运算_NOI导刊2009提高(3)

    P1952 火星上的加法运算_NOI导刊2009提高(3) 题目描述 最近欢欢看到一本有关火星的书籍,其中她被一个加法运算所困惑,由于她的运算水平有限.她想向你求助,作为一位优秀的程序员,你当然不会拒 ...

随机推荐

  1. 使用mybatis提供的各种标签方法实现动态拼接Sql。使用sql片段提取重复的标签内容

    Sql中可将重复的sql提取出来,使用时用include引用即可,最终达到sql重用的目的,如下: <select id="findUserByNameAndSex" par ...

  2. A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南

    A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读 ...

  3. CF 990 Educational Codeforces Round 45

    既然补了就简单记录一下. 感觉还算有一点营养. 官方题解传送门:点我 A Commentary Boxes 对拆掉$n \mod m$个和新建$m - (n \mod m)$求个最小. #includ ...

  4. [Jmeter]如何才能通过ant运行jmeter

    在开始运行build.xml之前,还有一步必须要做,那就是将JMeter所在目录下extras子目录里的ant-JMeter-1.1.1.jar复制到Ant所在目录lib子目录之下,这样Ant运行时才 ...

  5. 手机端获取用户详细地理位置(高德地图API)

    项目开发需要获取用户详细的地理位置信息,使用了高德地图API接口 1,注册高德地图开发者账号获取开发者Key 2,页面调用 <script type="text/javascript& ...

  6. chrome会话cookie显示过期时间为1969-12-31T23:59:59.000Z

    cookie不设置过期时间的话,为浏览器会话cookie,关闭浏览器自动删除cookie 但是在chrome浏览器下,cookie过期时间显示为“1969-12-31T23:59:59.000Z” 在 ...

  7. Oracle学习笔记(十三)

    十四.触发器(监听数据操作的工具) 1.什么是触发器? 数据库触发器是一个与表相关联的.存储的PL/SQL程序 作用: 每当一个特定的数据操作语句(insert.update.delete)在指定的表 ...

  8. underscore collections

    1._.each(list, iterator, [context]):对集合中每一元素执行处理器方法. 如果传递了context参数,则把iterator绑定到context对象上.每次调用iter ...

  9. Oracle EBS View 视图查看没有数据

    --关于看视图查看没有数据的问题 --原因OU过滤关系 --Oracle SQL*Plus --toad EXECUTE  fnd_client_info.set_org_context(:ou_id ...

  10. 二道Const,readonly 和 override, new的面试题

    1. Const 和 readonly ; ; ; ; static void Main(string[] args) { Console.WriteLine("aa:{0},bb:{1}, ...