Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。

Input

* Line 1: Three space-separated integers: N, ML, and MD. * Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. * Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows
#2 and #3 dislike each other and must be no fewer than 3 units apart.

Sample Output

27

四只牛分别在0,7,10,27.

Solution

差分约束“板子题”。一开始没连超级源点挂了一次……
具体怎么操作看下代码的连边就懂了……

Code

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
#define N (200000+100)
#define INF (2000000000)
using namespace std; struct Node{int len,next,to;}edge[N*];
int head[N],num_edge;
int cnt[N],n,m,a,b,c,ml,md;
long long dis[N],ans;
bool used[N];
queue<int>q; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].len=l;
head[u]=num_edge;
} void SPFA(int s)
{
for (int i=; i<=n; ++i) dis[i]=INF,cnt[i]=;
q.push(s);
dis[s]=;
used[s]=true;
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=head[x]; i; i=edge[i].next)
if (dis[x]+edge[i].len<dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+edge[i].len;
if (!used[edge[i].to])
{
q.push(edge[i].to);
cnt[edge[i].to]++;
if (cnt[edge[i].to]>=n){puts("-1");exit();}
used[edge[i].to]=true;
}
}
used[x]=false;
}
} int main()
{
scanf("%d%d%d",&n,&ml,&md);
for (int i=; i<=n; ++i) add(,i,);
for (int i=; i<=ml; ++i)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for (int i=; i<=md; ++i)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
SPFA(),SPFA();
if (dis[n]==INF) puts("-2");
else printf("%d\n",dis[n]);
}

BZOJ1731:[USACO]Layout 排队布局(差分约束)的更多相关文章

  1. 【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束

    [BZOJ1731][Usaco2005 dec]Layout 排队布局 Description Like everyone else, cows like to stand close to the ...

  2. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  3. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  4. bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...

  5. bzoj 1731 Layout 排队布局 —— 差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 差分约束: ML: dis[y] - dis[x] <= k,即 x 向 y 连 ...

  6. 【bzoj1731】Layout 排队布局

    1731: [Usaco2005 dec]Layout 排队布局 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 868  Solved: 495[Subm ...

  7. 1731: [Usaco2005 dec]Layout 排队布局*

    1731: [Usaco2005 dec]Layout 排队布局 题意: n头奶牛在数轴上,不同奶牛可以在同个位置处,编号小的奶牛必须在前面.m条关系,一种是两头奶牛距离必须超过d,一种是两头奶牛距离 ...

  8. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  9. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

随机推荐

  1. WCF 之部署(VS2010)

    一. 环境vs2010,WCF应用程序,server 2008 第一步:WCF项目右键点击项目,选择生成部署包,如下图: 第二步:WCF项目上右键,选择:在windows资源管理器中打开文件夹,如下图 ...

  2. 四、spark集群架构

    spark集群架构官方文档:http://spark.apache.org/docs/latest/cluster-overview.html 集群架构 我们先看这张图 这张图把spark架构拆分成了 ...

  3. Zookeeper配置要点必看

    注意点 zookeeper需要在各个节点的机器上搭建,它的启动也要在各个节点的$ZOOKEEPER_HOME/bin 下启动. 环境搭建 下载安装包并解压. 在$ZOOKEEPER_HOME/conf ...

  4. 使用Tensorflow和MNIST识别自己手写的数字

    #!/usr/bin/env python3 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data ...

  5. log4php使用及配置

    log4php使用及配置 1.在项目中加入log4php包 2.log4php配置 在项目配置包中添加logger_config.xml配置文件: logger_config.xml配置文件添加代码如 ...

  6. MongoDB客户端及监控工具

    现在许多应用都使用MongoDB存储大量的业务数据,MongoDB基于文档式的存储,在大数据行业的应用还是很普遍的.MongoDB的客户端工具也很多,基于web的却不多,国产的就更少了,下面这款国产的 ...

  7. jquery获取哪一个下拉框被选中

    var val = $("select[name='type_irb'] option:selected").val();

  8. csharp: SQL Server 2005 Database Backup and Restore using C#

    1.第一种方式: using SQLDMO;//Microsoft SQLDMO Object Library 8.0 /// <summary> /// 数据库的备份 /// 涂聚文注: ...

  9. 洛谷P3384 树链剖分

    如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x ...

  10. Maximum Product Subarray 最大连续乘积子集

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...