Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。

Input

* Line 1: Three space-separated integers: N, ML, and MD. * Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. * Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows
#2 and #3 dislike each other and must be no fewer than 3 units apart.

Sample Output

27

四只牛分别在0,7,10,27.

Solution

差分约束“板子题”。一开始没连超级源点挂了一次……
具体怎么操作看下代码的连边就懂了……

Code

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
#define N (200000+100)
#define INF (2000000000)
using namespace std; struct Node{int len,next,to;}edge[N*];
int head[N],num_edge;
int cnt[N],n,m,a,b,c,ml,md;
long long dis[N],ans;
bool used[N];
queue<int>q; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].len=l;
head[u]=num_edge;
} void SPFA(int s)
{
for (int i=; i<=n; ++i) dis[i]=INF,cnt[i]=;
q.push(s);
dis[s]=;
used[s]=true;
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=head[x]; i; i=edge[i].next)
if (dis[x]+edge[i].len<dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+edge[i].len;
if (!used[edge[i].to])
{
q.push(edge[i].to);
cnt[edge[i].to]++;
if (cnt[edge[i].to]>=n){puts("-1");exit();}
used[edge[i].to]=true;
}
}
used[x]=false;
}
} int main()
{
scanf("%d%d%d",&n,&ml,&md);
for (int i=; i<=n; ++i) add(,i,);
for (int i=; i<=ml; ++i)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for (int i=; i<=md; ++i)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
SPFA(),SPFA();
if (dis[n]==INF) puts("-2");
else printf("%d\n",dis[n]);
}

BZOJ1731:[USACO]Layout 排队布局(差分约束)的更多相关文章

  1. 【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束

    [BZOJ1731][Usaco2005 dec]Layout 排队布局 Description Like everyone else, cows like to stand close to the ...

  2. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  3. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  4. bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...

  5. bzoj 1731 Layout 排队布局 —— 差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 差分约束: ML: dis[y] - dis[x] <= k,即 x 向 y 连 ...

  6. 【bzoj1731】Layout 排队布局

    1731: [Usaco2005 dec]Layout 排队布局 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 868  Solved: 495[Subm ...

  7. 1731: [Usaco2005 dec]Layout 排队布局*

    1731: [Usaco2005 dec]Layout 排队布局 题意: n头奶牛在数轴上,不同奶牛可以在同个位置处,编号小的奶牛必须在前面.m条关系,一种是两头奶牛距离必须超过d,一种是两头奶牛距离 ...

  8. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  9. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

随机推荐

  1. SSIS教程:创建简单的ETL包 -- 6. 对项目部署模型使用参数(Using Parameters with the Project Deployment Model)

    在本课中,将修改在第 5 课: 添加包部署模型的包配置中创建的包,以便使用项目部署模型.您将使用一个参数替换该配置值,以便指定示例数据位置.还可以复制本教程附带的已完成的 Lesson 5 包. 使用 ...

  2. angular1的 伪MVC

    以下的代码是自己对angular1的一些理解.如果非要按照mvc的这种模式开发..可以用以下的这种方式理解. //userFactorys.js 这是服务方法 return 的方法取得json数据里的 ...

  3. SQL Serever学习11——数据库的安全管理

    公司管理软件设计完成,但是日常工作繁忙,向领导提出增加几个管理员,帮助管理和维护系统,领导同意了,但是要求一定要管理好这几个管理员用户,保证数据库的安全. 修改身份验证模式 数据库验证机制 sqlse ...

  4. Cheatsheet: 2017 06.01 ~ 06.30

    .NET Porting a .NET Framework library to .NET Core Performance Improvements in .NET Core High-perfor ...

  5. IO流的复习笔记

    IO字节流和缓冲流 IO字节流的读取和写入 读取 import java.io.FileInputStream; import java.io.FileNotFoundException; impor ...

  6. 二进制之Java中的进制(二)

    1. jdk中的进制转换 十进制转十六进制 Integer.toHexString(int i); 十进制转八进制 Integer.toOctalString(int i); 十进制转二进制 Inte ...

  7. nginx 安装配置和常用命令

    基本环境:CentOS 1. 下载 nginx [root@localhost ~]# cd Downloads/ [root@localhost Downloads]# wget http://ng ...

  8. js画一棵树

    用纯js画一棵树.思路: 1.一棵树的图片,作为页面背景: 2.通过html5中的canvas画布进行遮罩: 3.定时每隔10ms,从下往上清除1px的遮罩: <!DOCTYPE html> ...

  9. Inter网关做Team的方法

    1.到Inter官网上找到相关驱动程序 2.在安装过程中,要求勾选高级网络 3.驱动安装完成后,打开网卡的属性窗口,在“分组”选项卡中,勾中,并输入Team名称 4.选择需要做Team的网卡 5.选择 ...

  10. JS深拷贝继承

    所谓深拷贝,就是子对象不紧继承父对象的非引用属性,还能继承父对象的引用属性(Object,Array),当子对象对继承的引用类型属性做修改时,父对象的引用类型不会被修改. 我们先写个浅拷贝的封装函数: ...