Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。

Input

* Line 1: Three space-separated integers: N, ML, and MD. * Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. * Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows
#2 and #3 dislike each other and must be no fewer than 3 units apart.

Sample Output

27

四只牛分别在0,7,10,27.

Solution

差分约束“板子题”。一开始没连超级源点挂了一次……
具体怎么操作看下代码的连边就懂了……

Code

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
#define N (200000+100)
#define INF (2000000000)
using namespace std; struct Node{int len,next,to;}edge[N*];
int head[N],num_edge;
int cnt[N],n,m,a,b,c,ml,md;
long long dis[N],ans;
bool used[N];
queue<int>q; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].len=l;
head[u]=num_edge;
} void SPFA(int s)
{
for (int i=; i<=n; ++i) dis[i]=INF,cnt[i]=;
q.push(s);
dis[s]=;
used[s]=true;
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=head[x]; i; i=edge[i].next)
if (dis[x]+edge[i].len<dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+edge[i].len;
if (!used[edge[i].to])
{
q.push(edge[i].to);
cnt[edge[i].to]++;
if (cnt[edge[i].to]>=n){puts("-1");exit();}
used[edge[i].to]=true;
}
}
used[x]=false;
}
} int main()
{
scanf("%d%d%d",&n,&ml,&md);
for (int i=; i<=n; ++i) add(,i,);
for (int i=; i<=ml; ++i)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for (int i=; i<=md; ++i)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
SPFA(),SPFA();
if (dis[n]==INF) puts("-2");
else printf("%d\n",dis[n]);
}

BZOJ1731:[USACO]Layout 排队布局(差分约束)的更多相关文章

  1. 【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束

    [BZOJ1731][Usaco2005 dec]Layout 排队布局 Description Like everyone else, cows like to stand close to the ...

  2. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  3. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  4. bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...

  5. bzoj 1731 Layout 排队布局 —— 差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 差分约束: ML: dis[y] - dis[x] <= k,即 x 向 y 连 ...

  6. 【bzoj1731】Layout 排队布局

    1731: [Usaco2005 dec]Layout 排队布局 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 868  Solved: 495[Subm ...

  7. 1731: [Usaco2005 dec]Layout 排队布局*

    1731: [Usaco2005 dec]Layout 排队布局 题意: n头奶牛在数轴上,不同奶牛可以在同个位置处,编号小的奶牛必须在前面.m条关系,一种是两头奶牛距离必须超过d,一种是两头奶牛距离 ...

  8. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  9. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

随机推荐

  1. Linux基础学习1--档案的属性和目录

    用命令 ls -al可以列出当前所有档案,和档案的各种情况 第一块是档案属性:一共10个,第一个代表档案类型 {d:目录,-:档案,l:连接档,b:接口设备,c:串行端口设备},接下来是三个一组,第一 ...

  2. C# 泛型使用笔记

    泛型的基本概念我就不在这重复了,不了解的同学请自行百度. 我主要写下我在项目中要到的泛型实例.献丑了.....有什么不好或不对的地方大家尽可评论留言. 为什么要用泛型? 通过使用泛型,我们可以极大地提 ...

  3. word转html实现预览(asp.net)

    word转html 需要通过nuget 安装 Microsoft.Office.Interop.Word Microsoft.Office.Interop.Excel 使用 Microsoft.Asp ...

  4. g2o error2

    ./pose_estimation_3d2d: error while loading shared libraries: libg2o_core.so: cannot open shared obj ...

  5. axios中的qs

    qs是一个npm仓库所管理的包,可通过npm install qs命令进行安装. 1. qs.parse()将URL解析成对象的形式 const Qs = require('qs'); let url ...

  6. CSS,js,html

    图片盗链问题使用以下meta标签解决 <meta name="referrer" content="never"> Chrome 中文界面下默认会将 ...

  7. 关于Bootstrap的悬浮窗口(popover)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. window.addEventListener绑定事件记得删除

    在做postMessage通信时,window.addEventListener绑定的事件记得要remove掉 就和setTime一样,不然占用内存资源

  9. JS 对html标签的属性的干预以及JS 对CSS 样式表属性的干预

      -任何标签的任何属性都可以修改! -HTML里是怎么写, JS就怎么写   以下是一段js 作用于 css 的 href的 代码   <link id="l1" rel= ...

  10. 新手嘛,先学习下 Vue2.0 新手入门 — 从环境搭建到发布

    Vue2.0 新手入门 — 从环境搭建到发布 转自:http://www.runoob.com/w3cnote/vue2-start-coding.html 具体文章详细就不搬了,步骤可过去看,我这就 ...