题目链接

正解:矩阵树定理+拉格朗日插值。

一下午就搞了这一道题,看鬼畜英文题解看了好久。。

首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法似乎更难想。。

我们先构造一个函数$f(x)$,表示用一个完全图和$x-1$棵原树的边,构成的生成树的方案数。

也就是说,原树的每条边复制成$x$条,不在原树的边都变成一条边,求这个图的生成树的方案数。

然后我们可以发现,这个方案数实际上就等于$\sum_{i=0}^{n-1}x^{i}*ans_{i}$,其中$ans_{i}$表示询问的恰好有$i$条边的答案。

稍微解释一下,我们选定了原树的$i$条边,那么原树这$i$条边每条边就有$x$种选择,其他边只有$1$种选择。

然后现在我们的目标就变成了求出这个函数所表示的多项式的系数。

那么我们可以算出$x$取$[1,n]$的答案,用拉格朗日插值求出多项式,计算答案可以用矩阵树定理。

复杂度为$O(n^{4}+n^{3})$,写完题解以后发现也不是很难。。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define rhl (1000000007)
#define N (105) using namespace std; int a[N][N],g[N][N],p[N],ans[N],fac[N],ifac[N],inv[N],n,len; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return q*x;
} il int qpow(RG int a,RG int b){
RG int ans=;
while (b){
if (b&) ans=1LL*ans*a%rhl;
if (b>>=) a=1LL*a*a%rhl;
}
return ans;
} il int gauss(){
RG int res=;
for (RG int i=,id,inv;i<n;++i){
for (id=i;id<n && !a[id][i];++id); if (id>=n) return ;
if (id!=i){
for (RG int j=;j<n;++j) swap(a[i][j],a[id][j]);
res=-res;
}
res=1LL*res*a[i][i]%rhl,inv=qpow(a[i][i],rhl-);
for (RG int j=i+,tmp;j<n;++j){
if (!a[j][i]) continue;
tmp=1LL*a[j][i]*inv%rhl;
for (RG int k=i;k<n;++k)
a[j][k]=(a[j][k]-1LL*a[i][k]*tmp)%rhl;
}
}
return (res+rhl)%rhl;
} int main(){
#ifndef ONLINE_JUDGE
freopen("stranger.in","r",stdin);
freopen("stranger.out","w",stdout);
#endif
n=gi(),fac[]=ifac[]=;
for (RG int i=;i<=n;++i){
inv[i]=i==?:1LL*(rhl-rhl/i)*inv[rhl%i]%rhl;
fac[i]=1LL*fac[i-]*i%rhl;
ifac[i]=1LL*ifac[i-]*inv[i]%rhl;
}
for (RG int i=,u,v;i<n;++i)
u=gi(),v=gi(),g[u][v]=g[v][u]=;
for (RG int k=;k<=n;++k){
for (RG int i=;i<=n;++i)
for (RG int j=;j<=n;++j) a[i][j]=;
for (RG int i=;i<n;++i)
for (RG int j=i+,tmp;j<=n;++j){
tmp=g[i][j] ? k : ;
a[i][j]-=tmp,a[j][i]-=tmp;
a[i][i]+=tmp,a[j][j]+=tmp;
}
p[len=]=1LL*gauss()*ifac[k-]%rhl*ifac[n-k]%rhl;
if ((n-k)&) p[]=rhl-p[];
for (RG int t=,tmp;t<=n;++t){
if (k==t) continue; tmp=rhl-t;
for (RG int i=++len;~i;--i)
p[i]=(1LL*tmp*p[i]+(i?p[i-]:))%rhl;
}
for (RG int i=;i<=len;++i){
ans[i]+=p[i],p[i]=; if (ans[i]>=rhl) ans[i]-=rhl;
}
}
for (RG int i=;i<n;++i) printf("%d ",ans[i]); return ;
}

codeforces 917D Stranger Trees的更多相关文章

  1. Codeforces 917D - Stranger Trees(矩阵树定理/推式子+组合意义)

    Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( ...

  2. 题解-Codeforces917D Stranger Trees

    Problem \(\mathrm{Codeforces~917D}\) 题意概要:一棵 \(n\) 个节点的无向树.问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对 ...

  3. CF917D Stranger Trees

    CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...

  4. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  5. Solution -「CF 917D」Stranger Trees

    \(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点的有标号树,求与这棵树重合恰好 \(0,1,\cdots,n-1\) 条边的树的个数,对 \(10 ...

  6. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  7. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  8. 【动态规划】Codeforces 711C Coloring Trees

    题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...

  9. CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)

    题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...

随机推荐

  1. 相片Exif协议

    今天看他们安卓在做项目遇到一个要让旋转拍摄的相片竖屏方向显示 ,网上搜了下找到了安卓的一个博客,看了下想着既然安卓有ios也应该会有,果然不出所料,确实是有.其实他们都是遵循Exif协议,百度百科也有 ...

  2. Delphi下OpenGL2d绘图(04)-画四边形

    一.前言 画四边形基本上与前几遍文字代码是相同.区别在于glBegin()的参数“GL_QUADS”.绘制的框架代码可以使用 Delphi下OpenGL2d绘图(01)-初始化 中的代码.修改的部份为 ...

  3. Apache mod_rewrite

    mod_rewrite是Apache的一个非常强大的功能,它可以实现伪静态页面.下面我详细说说它的使用方法!对初学者很有用的哦! 1.检测Apache是否支持mod_rewrite phpinfo() ...

  4. as3中xml文件的加载和读取

    ---恢复内容开始--- as代码如下: xml如下: 总结: 用URLReuqest对象加载xml的url 创建一个URLLoader对象,将1中的URLRequest指定给他 给URLLoader ...

  5. 禁止选中页面内容-兼容ie、firefox、chrome

    使用js禁止用户选中网页上的内容,IE及Chrome下的方法一样.使用onselectstart, 比如: 在body中加入<body onselectstart="return fa ...

  6. 一个JNI的helloworld小demo

    最近想学习一下jni,在网上看了一些demo,自己也操作了一遍,首先我将我自己学习的demo网站贴出来:https://blog.csdn.net/lwcloud/article/details/78 ...

  7. JAVA工具系列之——Postman

    1 概述 Postman是一款测试rest接口的工具,可以实现前端未实施的情况下,后端同步开发.本文从部署到运用进行展开描写. 2 部署 第一步:进入Postman官网下载最新版本,下载链接 第二步: ...

  8. 浏览器同源策略与ajax跨域方法汇总

    原文 什么是同源策略 如果你进行过前端开发,肯定或多或少会听说过.接触过所谓的同源策略.那么什么是同源策略呢? 要了解同源策略,首先得理解“源”.在这个语境下,源(origin)其实就是指的URL.所 ...

  9. JavaWeb学习总结(九):Cookie进行会话管理

    一.会话的概念 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 有状态会话:一个同学来过教室,下次再来教室,我们会知道这个同学曾 ...

  10. GIS 地理坐标分类

    wgs84 GPS系统直接通过卫星定位获得的坐标.(最基础的坐标.) gcj02 兲朝已安全原因为由,要求在中国使用的地图产品使用的都必须是加密后的坐标.这套加密后的坐标就是gcj02 google的 ...