题意:给出m次n个千足虫的足数信息,确定在第几次测试后可以确定每个千足虫的来历。

我们可以观察到每个测试结果具有异或后依然成立的性质,于是实际上我们只需要从头到尾确定有n个线性相关的向量是在哪一个测试后出现。

也就是说,直到出现了n个线性基,此方程的自由变元的数量才为0,此方程才有唯一解。

所以,依次将每个二进制数加入线性基,动态维护线性基中基的数量以及基的信息,直到基的个数变为n,输出答案。

由于二进制位数达到了1000位,于是用bitset优化,可以使得该题O(m*n^2)只需要360ms即可。。。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... bool flag[N];
bitset<N> a, b[N];
char s[N]; int main ()
{
int n, m, mark, num=, ans=;
scanf("%d%d",&n,&m);
FOR(i,,m) {
scanf("%s%d",s,&mark); a.reset();
FO(j,,n) if (s[j]=='') a.set(j);
FO(j,,n) {
if (!a[j]) continue;
if (b[j].any()) a^=b[j], mark^=flag[j];
else {
b[j]=a; flag[j]=mark;
FO(k,j+,n) if (b[k].any()&&b[j][k]) b[j]^=b[k], flag[j]^=flag[k];
for (int k=j-; k>=; --k) if (b[k][j]) b[k]^=b[j], flag[k]^=flag[j];
++num;
break;
}
}
if (num==n) {ans=i; break;}
}
if (ans) {
printf("%d\n",ans);
FO(i,,n) puts(flag[i]?"?y7M#":"Earth");
}
else puts("Cannot Determine");
return ;
}

BZOJ 1923 外星千足虫(bitset优化线性基)的更多相关文章

  1. BZOJ 1923 外星千足虫(高斯消元)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1923 题意:有n个数字,m次测试.每个数字为0或者1.每次测试选出一些数字出来把他们加起 ...

  2. 【BZOJ 1923】1923: [Sdoi2010]外星千足虫 (高斯消元异或 | BITSET用法)

    1923: [Sdoi2010]外星千足虫 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个 ...

  3. bzoj 1923 [Sdoi2010]外星千足虫(高斯消元+bitset)

    1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 634  Solved: 397[Submit][Status ...

  4. BZOJ 1923: [Sdoi2010]外星千足虫 [高斯消元XOR]

    1923: [Sdoi2010]外星千足虫 对于 100%的数据,满足 N≤1,000,M≤2,000. 裸高斯消元解异或方程组 给定方程顺序要求用从上到下最少的方程,那么找主元时记录一下最远找到哪个 ...

  5. 【BZOJ】【1923】【Sdoi2010】外星千足虫

    高斯消元解Xor方程组 ZYF Orz 这题……不作死就不会死T^T,用bitset确实比较快,而且可以从string直接转成bitset(构造函数). 但问题是我把转过来以后的顺序搞反了……原本以为 ...

  6. 【BZOJ1923】外星千足虫(线性基)

    [BZOJ1923]外星千足虫(线性基) 题面 BZOJ 洛谷 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用"点足 ...

  7. bzoj千题计划188:bzoj1923: [Sdoi2010]外星千足虫 (高斯—若尔当消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> ...

  8. BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元+bitset

    BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结 ...

  9. 1923: [Sdoi2010]外星千足虫

    1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1254  Solved: 799[Submit][Statu ...

随机推荐

  1. 关于homebrew使用时遇到的问题: Error: Could not symlink bin/gdb/usr/local/bin is not writable.

    # 关于homebrew使用时遇到的问题: Error: Could not symlink bin/gdb/usr/local/bin is not writable. 这是我在给我的Mac电脑安装 ...

  2. #20155331 2016-2017-2 《Java程序设计》第3周学习总结

    20155331 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 第四章 程序中的类由两个部分组成:属性和方法.属性对应的是对象的特征:方法对应的是对象的行为 ...

  3. day2 RHCE

    1.配置SELINUX 在system1和system2上要求SeLinux的状态为enforcing.要求系统重启后依然生效. server [root@server0 ~]# getenforce ...

  4. (转) 前端面试之js相关问题(一)

    原帖地址:http://stephenzhao.github.io/2016/08/19/Front-end-Job-Interview-Questions/ 最近我也是经历过面试别人和去面试的人了, ...

  5. com.genuitec.runtime.generic.jee60 is not defined 导入项目的异常

    系统加载工程后,报错Target runtime com.genuitec.runtime.generic.jee60 is not defined,在发布工程的同事电脑上正常 新导入的工程,出问题很 ...

  6. selenium自动化之元素定位方法

    在使用selenium webdriver进行元素定位时,有8种基本元素定位方法(注意:并非只有8种,总共来说,有16种). 分别介绍如下: 1.name定位 (注意:必须确保name属性值在当前ht ...

  7. Appium 安卓计算器demo

    package testProject; import org.openqa.selenium.*; import org.openqa.selenium.remote.DesiredCapabili ...

  8. Python+MySQL开发医院网上预约系统(课程设计)一

    一:开发环境的配置 1:桌面环境为cnetos7+python2.7 2:MySQL的安装与配置 1)MySQL的安装 MySQL官方文档: http://dev.mysql.com/doc/mysq ...

  9. Laya 自适应 不拉伸处理

    Laya.init(640, Laya.Browser.width / 640 * 1028, WebGL); Laya.stage.scaleMode = "fixedwidth" ...

  10. oracle数据库之组函数

    组函数也叫聚合函数,用来对一组值进行运算,并且可以返回单个值 常见的组函数: (1)count(*),count(列名)  统计行数:找到所有不为 null 的数据来统计行数 (2)avg(列名)  ...