function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters
theta = theta - alpha * X' * (X * theta - y) / m;
iter = iter +1;
J_history(iter) = computeCostMulti(X, y, theta); end end

  

[ML] Gradient Descend Algorithm [Octave code]的更多相关文章

  1. (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning

    Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...

  2. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  3. How to Configure the Gradient Boosting Algorithm

    How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost ...

  4. 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

    6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation yo ...

  5. [ML] Gradient Boost

    参考链接: 1. https://medium.com/@cwchang/gradient-boosting-%E7%B0%A1%E4%BB%8B-f3a578ae7205 2. https://zh ...

  6. [ML] CostFunction [Octave code]

    function J = computeCostMulti(X, y, theta) m = length(y); % number of training examples J = 0; for i ...

  7. Gradient descend 梯度下降法和归一化、python中的实现(未完善)

    梯度下降法是优化函数参数最常用.简单的算法 通常就是将一组输入样本的特征$x^i$传入目标函数中,如$f(x) = wx + b$,再计算每个样本通过函数预测的值$f(x^i)$与其真实值(标签)$y ...

  8. (转)Let’s make a DQN 系列

    Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...

  9. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

随机推荐

  1. php环境重启

    php-fpm mysql nginx 一个lnmp的服务,主要就是靠这三个来维持的. 重启nginx # /usr/local/nginx/sbin/nginx -s stop # /usr/loc ...

  2. sqlplus中文问号

    添加两个环境变量后重启. 1.LANG=zh_CN.GBK(GBK是这样形式的,不同编码这里的value值需要跟着改变) 2.NLS_LANG=AMERICAN_AMERICA.ZHS16GBK(这个 ...

  3. 解决MySQL workbench的Can't connect to MySQL server on '127.0.0.1'(10061)问题

    如题,今天打开MySQL时,出现了这种问题,无法连接到数据库 问题原因:The error (2003) Can't connect to MySQL server on 'server' (1006 ...

  4. 基于js-spark-md5前端js类库,快速获取文件Md5值

    js-spark-md5是歪果仁开发的东西,有点多,但是我们只要一个js文件即可,具体类包我存在自己的oschina上,下载地址:https://git.oschina.net/jianqingwan ...

  5. Beta阶段第2周/共2周 Scrum立会报告+燃尽图 12

    作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2411] 版本控制:https://git.coding.net/liuyy08 ...

  6. 关于React setState的实现原理(三)

    前面提到事务即将结束时,会去调用FLUSH_BATCHED_UPDATES的flushBatchedUpdates方法执行批量更新,该方法会去遍历dirtyComponents,对每一项执行perfo ...

  7. HDU 1402

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 fft做O(nlog(n))大数乘法,kuangbin的模板 #include <stdio.h&g ...

  8. 第十七课 StaticList和DynamicList实现

    本节我们要实现StaticList和DynamicList,如下: StaticList的设计要点: StaticList是一个类模板,使用原生数组作为顺序存储空间,使用模板参数决定数组大小 在Sta ...

  9. tar格式 方法安装MySQL后,初次登录出现 ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this statement

    参考: https://www.cnblogs.com/kerrycode/p/4368312.html http://blog.csdn.net/u014520039/article/details ...

  10. rabbitmq学习(三):rabbitmq之扇形交换机、主题交换机

    前言 上篇我们学习了rabbitmq的作用以及直连交换机的代码实现,这篇我们继续看如何用代码实现扇形交换机和主题交换机 一.扇形交换机 1.生产者 /** * 生产者 */ public class ...