2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

思路:gcd(x,y)=p;p为素数;

   gcd(x/p,y/p)==1;

   一个p的贡献为1-(N/p),求前缀和意思;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 1000000009
#define inf 999999999
#define esp 0.00000000001
//#pragma comment(linker, "/STACK:102400000,102400000")
const int N=1e5,M=1e7+;
ll p[M],ji;
bool vis[M];
ll phi[M];
void get_eular(int n)
{
ji = ;
memset(vis, true, sizeof(vis));
for(int i = ; i <= n; i++)
{
if(vis[i])
{
p[ji ++] = i;
phi[i] = i - ;
}
for(int j = ; j < ji && i * p[j] <= n; j++)
{
vis[i * p[j]] = false;
if(i % p[j] == )
{
phi[i * p[j]] = phi[i] * p[j];
break;
}
else
phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
}
ll sumphi[M];
int main()
{
ll x,y,z,i,t;
get_eular();
sumphi[]=;
for(i=;i<=;i++)
sumphi[i]=sumphi[i-]+phi[i];
while(~scanf("%lld",&x))
{
ll ans=;
for(i=;p[i]<=x;i++)
ans+=*sumphi[x/p[i]]-;
printf("%lld\n",ans);
}
return ;
}

bzoj 2818 gcd 线性欧拉函数的更多相关文章

  1. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  2. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

  3. BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)

    标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...

  4. BZOJ 2818 Gcd 线性欧拉

    题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...

  5. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  6. BZOJ 2818 GCD(欧拉函数)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37161 题意:gcd(x, y) = 质数, 1 <= x, ...

  7. 【BZOJ】2818: Gcd(欧拉函数+质数)

    题目 传送门:QWQ 分析 仪仗队 呃,看到题后感觉很像上面的仪仗队. 仪仗队求的是$ gcd(a,b)=1 $ 本题求的是$ gcd(a,b)=m $ 其中m是质数 把 $ gcd(a,b)=1 $ ...

  8. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  9. 【BZOJ】2818: Gcd(欧拉函数/莫比乌斯)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2818 我很sb的丢了原来做的一题上去.. 其实这题可以更简单.. 设 $$f[i]=1+2 \tim ...

随机推荐

  1. System.Threading.Tasks.Task引起的IIS应用程序池崩溃

    问题现象 IIS应用程序池崩溃(Crash)的特征如下: 1. 从客户端看,浏览器一直处于连接状态,Web服务器无响应. 2. 从服务器端看(Windows Server 2008 + IIS 7.0 ...

  2. Windows Phone WebClient的使用

    webClient对象可用来下载XML文件,程序集等这些数据,其可以实现按需下载,所以还是有必要了解的.其主要包含几个事件:                                       ...

  3. INSERT高级应用

    INSERT INTO departments VALUES (departments_seq.nextval, 'Entertainment', 162, 1400); INSERT INTO em ...

  4. spring-boot集成redis

    application.properties #redis 配置 # Redis数据库索引(默认为0) spring.redis.database=0 # Redis服务器地址 spring.redi ...

  5. javase---Java反射操作

    1首先认识什么叫反射 正常的情况下,我们操作一个对象,则必须找到这个对象对应的类,然后实例化,然后再做各种操作, 反射的则通过一个对象获取对应的类,然后实例化,然后做各种操作, 2反射的操作步骤 I获 ...

  6. pta 习题集5-17 哥尼斯堡的“七桥问题”

    哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示. 可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707-1783)最终解决 ...

  7. Python开发【Django】:Model操作(一)

    Django ORM基本配置 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去 ...

  8. mysql 取当前日期对应的周一或周日

    select subdate(curdate(),date_format(curdate(),'%w')-1)//获取当前日期在本周的周一 select subdate(curdate(),date_ ...

  9. shell export 命令

    export 命令作用是 把变量导出 也可以用export来定义环境变量 导入 定义的变量 这样的话类似于python面向对象的self.变量 一样 在脚本到处调用这个变量

  10. POJ3070:Fibonacci(矩阵快速幂模板题)

    http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...