Luogu_2774 方格取数问题

二分图最小割

第一次做这种题,对于某些强烈暗示性的条件并没有理解到。

也就是每一立刻理解到是这个图是二分图。

为什么?

横纵坐标为奇数的只会和横纵坐标为偶数的相连。

最大和=全局和-最小代价

所以可以反向缩小最小代价。

考虑奇数点与源点相连,偶数点与汇点相连,流量都是这个点的权值。

然后奇数点像偶数点连边,权值无限大。

这样构图。最小割是一个简单割。

割的流量就是最小的代价。

要么奇数点被割去,要么相邻的四个偶数点被割去

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> using std::queue;
using std::min; const int maxn=301;
const int inf=0x7fffffff;
const int dx[]={0,0,1,-1};
const int dy[]={1,-1,0,0}; struct node
{
int p;
int nxt;
int value;
node(int a=0,int b=0,int c=0)
{
p=a;
value=b;
nxt=c;
}
}; node line[maxn*maxn<<1];
int head[maxn*maxn],tail;
int cur[maxn*maxn];
int Dis[maxn*maxn];
int Map[maxn][maxn];
int S,T; void add(int a,int b,int c,int d)
{
line[++tail]=node(b,c,head[a]);
head[a]=tail;
line[++tail]=node(a,d,head[b]);
head[b]=tail;
} void init(int n,int m)
{
S=n*m;T=n*m+1;
tail=-1;
memset(head,-1,sizeof(head));
} int Bfs(int s,int t)
{
queue<int>q;
memset(Dis,0,sizeof(Dis));
Dis[s]=1;q.push(s);
while(!q.empty())
{
int pas=q.front();q.pop();
for(int i=head[pas];i!=-1;i=line[i].nxt)
{
int v=line[i].p;
if(Dis[v]||!line[i].value) continue;
Dis[v]=Dis[pas]+1;
q.push(v);
}
}
for(int i=0;i<=T;i++) cur[i]=head[i];
return Dis[t];
} int Dfs(int now,int aim,int limte)
{
if(now==aim||!limte) return limte;
int res=0,f;
for(int &i=cur[now];i!=-1;i=line[i].nxt)
{
int v=line[i].p;
if(Dis[v]==Dis[now]+1&&(f=Dfs(v,aim,min(limte,line[i].value))))
{
res+=f;
limte-=f;
line[i].value-=f;
line[i^1].value+=f;
if(!limte) break;
}
}
return res;
} int Dinic(int s,int t)
{
int res=0;
while(Bfs(s,t))
res+=Dfs(s,t,inf);
return res;
} int main()
{
int n,m,tot=0;
scanf("%d%d",&n,&m);
init(n,m);
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
scanf("%d",&Map[i][j]);
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
if(((i+j)&1)==1)
{
add(S,i*m+j,Map[i][j],0);
for(int k=0;k<4;k++)
if(i+dx[k]>=0&&i+dx[k]<n&&j+dy[k]>=0&&j+dy[k]<m)
add(i*m+j,(i+dx[k])*m+(j+dy[k]),inf,0);
}
else
add(i*m+j,T,Map[i][j],0);
tot+=Map[i][j];
}
printf("%d",tot-Dinic(S,T));
return 0;
}

Luogu_2774 方格取数问题的更多相关文章

  1. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  2. NOIP200003方格取数

    NOIP200003方格取数 难度级别: D: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 XYZ 是首师大附中信息技术团编 ...

  3. vijos 1563 疯狂的方格取数

    P1653疯狂的方格取数 Accepted 标签:天才的talent[显示标签]   背景 Due to the talent of talent123,当talent123做完NOIP考了两次的二取 ...

  4. [HDU 1565+1569] 方格取数

    HDU 1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

  6. HDU-1565 方格取数(1)

    http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Me ...

  7. BZOJ 1475: 方格取数( 网络流 )

    本来想写道水题....结果调了这么久!就是一个 define 里面少加了个括号 ! 二分图最大点权独立集...黑白染色一下 , 然后建图 : S -> black_node , white_no ...

  8. [动态规划]P1004 方格取数

    ---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 ...

  9. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

随机推荐

  1. spring与dwr整合实现js直接使用java代码

    此文章是基于 搭建Jquery+SpringMVC+Spring+Hibernate+MySQL平台 一. jar包介绍 1. dwr-3.0.1.jar,支持 spring 4.3.4 的最低版本 ...

  2. 关于JAVA项目报表选型过程

    本人一直在走.NET技术路线,考虑到后期公司搞JAVA项目,也算是进行技术灾备,开始对JAVA技术进行关注.万事开头难,也是上来一头包.没办法,顶着上吧.上面开始分给我任务了.就是对后期项目报表进行方 ...

  3. Java 集合:List(ArrayList,LinkedList)

  4. BZOJ5372: PKUSC2018神仙的游戏

    传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...

  5. css,js移动资源

    随着移动市场的逐步扩大及相关技术的日趋完善,对前端开发提出了新的岗位要求,在继承前人成果的基础上需要在新的历史条件下有新的创新.移动端的开发,虽然没有IE6众多问题的折磨,但是多平台,多设备的兼容,也 ...

  6. Git和Github快速入门

    一.什么是Git? 假设你在的公司要上线一个新功能,你们开发团队为实现这个新功能,写了大约5000行代码,上线没2天,就发现这个功能用户并不喜欢,你老板让你去掉这个功能,你怎么办?你说简单,直接把50 ...

  7. border-radius圆角兼容方案

    1.下载ie-css3.htc 2.CSS代码段 box { -moz-border-radius: 15px; /* Firefox */ -webkit-border-radius: 15px; ...

  8. 推荐下:开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !

    视频播放, 原本是想h5 自带视频播放,使用很简单,结果现实很骨感. <video controls="controls" preload="auto" ...

  9. .NET 跨平台服务端资料

    OWIN Web API:  http://www.asp.net/web-api/overview/hosting-aspnet-web-api/use-owin-to-self-host-web- ...

  10. Python FFT (Fast Fourier Transform)

    np.fft.fft import matplotlib.pyplot as plt import plotly.plotly as py import numpy as np # Learn abo ...