Portal

Description

给出\(n,m(n,m\leq10^5),\)计算$$ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)$$

Solution

简单起见我们来钦定\(n\leq m\),然后计算\(\sum_{i=1}^n \sum_{j=1}^m gcd(i,j)\)。

\[ans = \sum_{i=1}^n \sum_{j=1}^m gcd(i,j) = \sum_{d=1}^n d\sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d]$$根据[洛谷P2522](http://www.cnblogs.com/VisJiao/p/LgP2522.html),变换为
$$ ans = \sum_{d=1}^n d \sum_{k=1}^{⌊\frac{n}{d}⌋} \mu(k)⌊\frac{n}{kd}⌋⌊\frac{m}{kd}⌋ $$然后我们就可以计算了。
> 时间复杂度$O(n\sqrt n)$。

##Code
```cpp
//[NOI2010]能量采集
#include <algorithm>
#include <cstdio>
using std::min; using std::swap;
typedef long long lint;
int const N=1e5+10;
int n,m;
int mu[N],pre[N];
int cntP,pr[N]; bool notP[N];
void init(int n)
{
mu[1]=1;
for(lint i=2;i<=n;i++)
{
if(!notP[i]) pr[++cntP]=i,mu[i]=-1;
for(int j=1;j<=cntP;j++)
{
lint x=pr[j]*i; if(x>n) break;
notP[x]=true;
if(i%pr[j]) mu[x]=-mu[i]; else {mu[x]=0; break;}
}
}
for(int i=1;i<=n;i++) pre[i]=pre[i-1]+mu[i];
}
int main()
{
scanf("%d%d",&n,&m); if(n>m) swap(n,m);
init(m);
lint ans=0;
for(int g=1;g<=n;g++)
{
int n0=n/g,m0=m/g; lint res=0;
for(int L=1,R;L<=n0;L=R+1)
{
int v1=n0/L,v2=m0/L; R=min(n0/v1,m0/v2);
res+=1LL*v1*v2*(pre[R]-pre[L-1]);
}
ans+=res*g;
}
printf("%lld\n",ans*2-1LL*n*m);
return 0;
}
```\]

洛谷P1447 - [NOI2010]能量采集的更多相关文章

  1. 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集

    https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...

  2. 洛谷P1447 [NOI2010]能量采集(容斥)

    传送门 很明显题目要求的东西可以写成$\sum_{i=1}^{n}\sum_{j=1}^m gcd(i,j)*2-1$(一点都不明显) 如果直接枚举肯定爆炸 那么我们设$f[i]$表示存在公因数$i$ ...

  3. 洛谷 P1447 [NOI2010]能量采集 (莫比乌斯反演)

    题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m} ...

  4. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  5. P1447 [NOI2010]能量采集

    题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...

  6. Luogu P1447 [NOI2010]能量采集

    Preface 最近反演题做多了看什么都想反演.这道题由于数据弱,解法多种多样,这里简单分析一下. 首先转化下题目就是对于一个点\((x,y)\),所消耗的能量就是\(2(\gcd(x,y)-1)+1 ...

  7. Luogu P1447 [NOI2010]能量采集 数论??欧拉

    刚学的欧拉反演(在最后)就用上了,挺好$qwq$ 题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$ 原式 $=2*\sum_{i=1}^{N}\sum_ ...

  8. luogu P1447 [NOI2010]能量采集 欧拉反演

    题面 题目要我们求的东西可以化为: \[\sum_{i=1}^{n}\sum_{j=1}^{m}2*gcd(i,j)-1\] \[-nm+2\sum_{i=1}^{n}\sum_{j=1}^{m}gc ...

  9. bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演

    题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/ ...

随机推荐

  1. shell中使用ssh

    ssh服务是不能用非交互的方式传递密码,想不输入密码,直接ssh连接到服务器有两种方法,sshpass和expect sshpass # wget http://downloads.sourcefor ...

  2. 用YII实现多重查询(基于tag)

    场景: 有一个饭店表 restaurant,存放所有饭店记录.我需要一个功能,将饭店按照不同的条件进行多重查询.就象这样:   氛围:浪漫 / 商务会谈 / 茅草屋 菜系:川菜 / 鲁菜 / 家常菜. ...

  3. iis的网站发布

    1.打开IIS服务器,添加“新网站”,命名网站的名称.物理路径(存放index.aspx的文件路径).ip地址和端口:2.在已经添加的网站,启用“目录浏览”,“默认文档”设置将要打开的网页 注:(1) ...

  4. lwz-过去一年的总结(15-16)

    今天2016年2月6日,还有1个半小时的时间,就要离开这个工作了9个月的地方,准备前往下个城市了.趁着这点时间,来给过去的一年做个即兴的总结吧. 2015年的2月份,在以前同学的提议和支持下,我重新学 ...

  5. 补题—Codeforces Round #346 (Div. 2) _智商欠费系列

    这次的题目相对容易 但是智商依旧不够用 原因有三点 1.英文水平堪忧 2 逻辑不严密 3 细节掌握不够好 传送门 http://codeforces.com/contest/659 A 题目大意 圆环 ...

  6. Zynq UltraScale+ MPSoC 多媒体应用

    消费者渴望更高的视频质量,推动了视频技术的发展.MPSoC 基于 Zynq-7000SoC ,包括一个可编程逻辑 (PL) 的桥接处理系统 (PS),但它在 Zynq UltraScale+ MPSo ...

  7. 稳定性 耗时 gc 过长问题排查 和工具

    自己的另外一篇: http://www.cnblogs.com/fei33423/p/7805186.html 偶有耗时抖动? gc 也有长耗时? fullgc 也是? 有同学反馈 swap 可能导致 ...

  8. 【树形背包】bzoj4033: [HAOI2015]树上染色

    仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 ...

  9. JavaWeb项目中集成Swagger API文档

    1.增加依赖 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-sw ...

  10. 三段式fsm

    1.状态转移的always中CS,同步ouput的always中NS. 2.3段fsm vs 2段fsm:output逻辑是组合逻辑和同步时序逻辑(消除里不稳的和毛刺). 3.3段fsm vs 1段f ...