最小割 bzoj-2229 Zjoi-2011

题目大意:题目链接

注释:略。


想法:

在这里给出最小割树的定义。

最小割树啊,就是这样一棵树。一个图的最小割树满足这棵树上任意两点之间的最小值就是原图中这两点之间的最小割。

这个性质显然是非常优秀的。

我们不妨这样假设,我么已经把最小割树求出来了,那么这个题就迎刃而解了。

我们可以直接枚举点对,然后暴力验证就可以直接枚举出所有的合法点对是吧。

那么问题来了,我们如何才能求出所有的合法的点对?

这就需要用到了最小割树的构建过程。

我们最小割树的构建方式是分治构建的。

也就是说:

我们每次直接随意取出两个点然后在原图中求出这两个点的最小割。

并且在这两个点之间连一条等于最小割大小的边。

之后我们对于原图把所有和S相连的分到一侧,把所有和T相连的分到另一侧。

递归分治即可。

Code:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
#define N 155
using namespace std; int cnt,n,m,dis[N],last[N],a[N],tmp[N],ans[N][N],s,t,mark[N];
struct edge{int to,c,next;}e[N*200];
queue <int> q; void addedge(int u,int v,int c)
{
e[++cnt].to=v;e[cnt].c=c;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].c=c;e[cnt].next=last[v];last[v]=cnt;
} bool bfs()
{
memset(dis,0,sizeof(dis));
dis[s]=2;
while (!q.empty()) q.pop();
q.push(s);
while (!q.empty())
{
int u=q.front();
q.pop();
for (int i=last[u];i;i=e[i].next)
if (e[i].c&&!dis[e[i].to])
{
dis[e[i].to]=dis[u]+1;
if (e[i].to==t) return 1;
q.push(e[i].to);
}
}
return 0;
} int dfs(int x,int maxf)
{
if (x==t||!maxf) return maxf;
int ret=0;
for (int i=last[x];i;i=e[i].next)
if (e[i].c&&dis[e[i].to]==dis[x]+1)
{
int f=dfs(e[i].to,min(e[i].c,maxf-ret));
e[i].c-=f;
e[i^1].c+=f;
ret+=f;
if (ret==maxf) break;
}
if (!ret) dis[x]=0;
return ret;
}
void dfs(int x)
{
mark[x]=1;
for (int i=last[x];i;i=e[i].next)
if (e[i].c&&!mark[e[i].to]) dfs(e[i].to);
}
void solve(int l,int r)
{
if (l==r) return;
s=a[l];t=a[r];
for (int i=2;i<=cnt;i+=2)
e[i].c=e[i^1].c=(e[i].c+e[i^1].c)/2;
int flow=0;
while (bfs()) flow+=dfs(s,inf);
memset(mark,0,sizeof(mark));
dfs(s);
for (int i=1;i<=n;i++)
if (mark[i])
for (int j=1;j<=n;j++)
if (!mark[j])
ans[i][j]=ans[j][i]=min(ans[i][j],flow);
int i=l,j=r;
for (int k=l;k<=r;k++)
if (mark[a[k]]) tmp[i++]=a[k];
else tmp[j--]=a[k];
for (int k=l;k<=r;k++)
a[k]=tmp[k];
solve(l,i-1);
solve(j+1,r);
} int main()
{
int cas;
scanf("%d",&cas);
while (cas--)
{
scanf("%d%d",&n,&m);
cnt=1;
for (int i=1;i<=n;i++)
a[i]=i;
memset(last,0,sizeof(last));
memset(ans,inf,sizeof(ans));
for (int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z);
}
solve(1,n);
int q;
scanf("%d",&q);
for (int i=1;i<=q;i++)
{
int x,tot=0;
scanf("%d",&x);
for (int i=1;i<n;i++)
for (int j=i+1;j<=n;j++)
if (ans[i][j]<=x) tot++;
printf("%d\n",tot);
}
cout<<endl;
}
return 0;
}

小结:好东西啊。

[bzoj2229][Zjoi2011]最小割_网络流_最小割树的更多相关文章

  1. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  2. [bzoj1001][BeiJing2006]狼抓兔子_网络流_最小割转对偶图

    狼抓兔子 bzoj-1001 BeiJing2006 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还 ...

  3. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

  4. [bzoj2561]最小生成树_网络流_最小割_最小生成树

    最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...

  5. [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树

    不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...

  6. [bzoj3894]文理分科_网络流_最小割

    文理分科 bzoj-3894 题目大意:题目链接. 注释:略. 想法: 这种题也是一种套路. 我们新建一个点表示收益点. 然后把所有的收益都加一起,求最小割表示代价即可. Code: #include ...

  7. [bzoj3630][JLOI2014]镜面通道_计算几何_网络流_最小割

    镜面通道 bzoj-3630 JLOI-2014 题目大意:题目链接. 注释:略. 想法: 我们发现,只要上下界没有被完全封死,我们就一定有一条合法的光路. 所以只需要将上界和下界拆开即可. 拆点,把 ...

  8. [bzoj1565][NOI2009]植物大战僵尸_网络流_拓扑排序

    植物大战僵尸 bzoj1565 题目大意:给你一张网格图,上面种着一些植物.你从网格的最右侧开始进攻.每个植物可以对僵尸提供能量或者消耗僵尸的能量.每个植物可以保护一个特定网格内的植物,如果一个植物被 ...

  9. ACM/ICPC 之 最小割转网络流(POJ3469)

    重点:构图 //最小割转网络流 //邻接表+Dinic //Time:5797Ms Memory:6192K #include<iostream> #include<cstring& ...

随机推荐

  1. iOS Programming Editing UITableView

    iOS Programming Editing UITableView 1.1 Editing mode  UITableView has an editing property, and when ...

  2. 修改xampp的mysql默认密码和端口

    修改MySQL默认密码 MySQL 的“root”用户默认状态是没有密码的,所以在 PHP 中您可以使用 mysql_connect("localhost","root& ...

  3. CentOS 6.4 linux下编译安装MySQL5.6.14

    CentOS 6.4下通过yum安装的MySQL是5.1版的,比较老,所以就想通过源代码安装高版本的5.6.14. 正文: 一:卸载旧版本 使用下面的命令检查是否安装有MySQL Server rpm ...

  4. Ghost Win10系统X64位和32位10041装机版下载

    更多系统下载尽在系统妈:http://www.xitongma.com 特别说明: 1.C:盘分区须至少15GB(安装过程有大量的解压临时文件),安装完成后C:盘占用10GB左右! 2.安装之后如有硬 ...

  5. 程序员段子:世界上最大的同性交友平台github

    程序员(又名程序猿)因为总是冲锋在网络的最前端,还有程序猿的各种特殊性,大家在茶余饭后都有很多关于程序员的段子流传.大多都是程序员自黑的,先说在前面,程序猿还是很好的!下面看看你有没有中枪的那一条呢? ...

  6. swift 与 NSObject

    以NSObject为基类,只是为了提供Objective-C API的使用入口: 经由@object修改的对象,是这些api的参量. NSObject是swift与oc特有机制沟通的桥梁. Subcl ...

  7. 【MSSQL】MDF、NDF、LDF文件的含义

    [MSSQL]MDF.NDF.LDF文件的含义 2012-09-03 15:32:56|  分类: SQL数据库|举报|字号 订阅     MDF是 primary data file 的缩写:NDF ...

  8. 诊断:ORA-00376 & ORA-01110

    现象: Errors in file /path/of/diag/rdbms/prod/PROD/trace/PROD_ora_13447.trc: ORA-00376: 此时无法读取文件 61 OR ...

  9. h5 中MP3 播放暂停 jq

    <!--音乐--> <div id="music"> <img src="../img/music.gif" class=&quo ...

  10. MySQL-----用户和授权管理

    用户管理: 创建用户:  create user '用户名'@'用户pc的ip地址(ip可以写精准点的,也可以是网段的,也可以写一个‘’%‘’提所有)' identified(设置密码) by '密码 ...