题意:

又是农夫和牛的故事。。。有m*n个黑白块,黑块的背面是白块,白块背面是黑块,一头牛踩一块,则这个块的上下左右的方块都会转动,问至少踩多少块,才会使所有块都变成白色?

分析:

还是开关问题,同样是一个块的转动会影响其他块的状态,但这次不是简单的线性排列,也不能只踩黑块。首先根据字典序,我们可以对第一排从00…00到11..11进行考虑(1表示踩),再后续一排一排的考虑。因为踩一块四周的块都会转动,所以必须规定个踩的原则,发现对于某块来说,他一旦改变上方块的状态,那个块就再也不会改变了,而其他块还有他的下一列改变他的机会(如果存在),所以就以上一行块为原则,如果上方为黑,则踩。最后判断最后一行是否全白。

字典序,因为他说了是把整个排列当做字符串的字典序,所以肯定是越前面的越小越好,而且从第一个例子中也能看出来。

-

代码:

#include<iostream>
#include<cstring>
using namespace std;
#define mem(s,a) memset(s,a,sizeof(s));
int m, n;
const int maxn = 25, INF = 0x3fffffff;
int x[5]={-1,0,0,0,1};
int y[5] = {0,1,0,-1,0};
int s[maxn][maxn], a[maxn][maxn], r[maxn][maxn], ans[maxn][maxn];
int cal()
{
int cnt = 0;
for(int i = 2; i <= m; i++){
for(int j = 1; j <= n; j++){
if((a[i-1][j]+r[i-1][j])%2==1) {
cnt++;
s[i][j] = 1;
}
for(int k = 0; k < 5; k++){
r[i+x[k]][j+y[k]]+=s[i][j];
}
}
}
/* for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
cout<<(r[m][i]+ a[m][i])%2;
if(j!=n) cout<<' ';
else cout<<endl;
}
}*/
for(int i =1; i <= n; i++){
if((r[m][i]+ a[m][i])%2==1) return -1;
} return cnt;
}
int main (void)
{
cin>>m>>n;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
cin>>a[i][j];
}
}
int res = INF;
for(int i = 0; i <1<<n; i++){
mem(s,0);mem(r,0);
int t = 0;
for(int j =n; j >= 1; j--){
s[1][j] = i>>j&1;
for(int k = 0; k < 5; k++){
r[1+x[k]][j+y[k]]+=s[1][j];
}
t += s[1][j];
}
int tm = cal();
if(tm>=0&&t+tm<res){
res = t + tm;
memcpy(ans,s,sizeof(s));
}
}
if(res==INF) {
cout<<"IMPOSSIBLE"<<endl;
return 0;
}
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
cout<<ans[i][j];
if(j!=n) cout<<' ';
else cout<<endl;
}
}
return 0;
}

POJ 3279 Fliptile【枚举】的更多相关文章

  1. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  2. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  3. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  4. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  5. POJ 3279 - Fliptile - [状压+暴力枚举]

    题目链接:http://poj.org/problem?id=3279 Sample Input 4 4 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 Sample Output 0 ...

  6. POJ - 3279 Fliptile (枚举)

    http://poj.org/problem?id=3279 题意 一个m*n的01矩阵,每次翻转(x,y),那么它上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步,并输出最 ...

  7. POJ 3279 Fliptile(反转 +二进制枚举)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13631   Accepted: 5027 Descrip ...

  8. (简单) POJ 3279 Fliptile,集合枚举。

    Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give more ...

  9. POJ 3279 Fliptile (二进制枚举)

    <题目链接> <转载于 >>> > 题目大意: 给定一个M*N矩阵,有些是黑色(1表示)否则白色(0表示),每翻转一个(i,j),会使得它和它周围4个格变为另 ...

随机推荐

  1. 8.JAVA-向上转型、向下转型

    父子对象之间的转换分为了向上转型和向下转型,它们区别如下: 向上转型 : 通过子类对象(小范围)实例化父类对象(大范围),这种属于自动转换 向下转型 : 通过父类对象(大范围)实例化子类对象(小范围) ...

  2. 掌握Spark机器学习库-07-最小二乘法

    1)最小化残差平方和 2)原理,推导过程 3)例子

  3. wget安装更新

    #查看当前wget版本信息 wget -V #下载 wget https://ftp.gnu.org/gnu/wget/wget-1.19.tar.gz #解压 tar xvf wget-1.19.t ...

  4. 8086汇编——Introduction(8086内部寄存器,段寄存器,存储器分段)

    8086汇编--Introduction 一.8086CPU的三种工作模式 实模式:只有低20位地址线起作用,仅能寻址第一个1MB的内存空间.MS DOS运行于该模式下. 保护模式:在该模式下,机器可 ...

  5. 谷歌全屏脚本 start chrome.exe --kiosk http://www.baidu.com

    start chrome.exe --kiosk http://www.baidu.com

  6. slover层解读

    void Solver<Dtype>::UpdateSmoothedLoss(Dtype loss, int start_iter, int average_loss) { if (los ...

  7. numpy add

    在numpy中,'+' 和add 是一样的 np.add(x1, x2) x1+x2 有种特殊情况需要注意,x1和x2的shape不一样的加法: 两个shape不一样的array相加后会变成一个com ...

  8. Ubuntu-11.10中 vim和Gedit打开html文件中文乱码问题

    解决vim中文乱码方法:     打开/etc/vim/vimrc     添加代码:     set fileencodings=utf-8,gb2312,gbk,gb18030     set t ...

  9. vue 全局组件的注册

    第一步 在main.js里面 引入需要注册的组件例如: //引入组件 import header from  './components/header.vue' import footer from ...

  10. IDEA基本使用及配置(2)

    IDEA配置:File >> Setiings进入配置界面 1.主题配置:默认两种主题,黑色.白色,可以自己在网上下载,然后File >> Import Setiings导入, ...