Codeforces870F. Paths
n<=10000000的图,满足:如果(i,j)>1就连一条边权1的无相变,问所有d(u,v) (u<=v)--u到v的最短路之和。
首先1和>n/2的质数都是孤立的点。然后两个数x,y如果(x,y)>1最短路就1,如果(x,y)=1且x,y都不是1或>n/2的质数一定能走,具体这么走:$P_x$--x的最小质因子,那就$x->p_x*p_y->y$,那这样都走不了,还有:$x->p_x*2->p_y*2->y$这种一定走得了,因为x或y如果是合数那$p_x$最大是根号的,再*2根本爆不了;如果是质数那由于<=n/2,所以自己*2一定不会爆,因此就统计1的路径数,2的路径数和3的路径数即可。
1的路径数:$\sum_{1<=x<=n,1<=y<=n}(x,y)>1=\sum_{x=1}^{n}x-1-\varphi (x)$。
3的路径数用总的减掉1和2的。
2的路径数,也就是满足$(x,y)=1$且$p_x*p_y<=n$且$x>1,y>1$且x,y都不是大于n/2的质数的:
(1)x,y都是合数:那直接枚举合数,然后$\sum_{y是合数}^{n} \varphi (y)- (<=y的质数) + (x的质因子数)-1$,注意到这一条说的质数、质因子都是包括>n/2的。
(2)x质y合:那也枚举合数,$\sum_{y是合数}^{n} s_y-(y的质因子数)$,其中$s_y$表示比$x*p_y<=n$的质数x的数量,注意到这一条说的质数、质因子都是不包括>n/2的。
(3)x质y质,那枚举质数,$\sum_{y是质数}^{n} x*y<=n$,即$x<=n/y$,注意到这里枚举的质数是<=n/2的,而且这里统计的x也是<=n/2的。
OK!
#include<string.h>
#include<stdlib.h>
#include<stdio.h>
//#include<assert.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n;
#define maxn 10000011
int prime[maxn/],lp=,phi[maxn],small[maxn],sum[][maxn],sonofbitch[][maxn]; bool notprime[maxn];
void pre(int n)
{
phi[]=; sum[][]=sum[][]=;
for (int i=;i<=n;i++)
{
sum[][i]=sum[][i-]+(!notprime[i] && i*<=n);
sum[][i]=sum[][i-]+(!notprime[i]);
if (!notprime[i]) {prime[++lp]=i; phi[i]=i-; sonofbitch[][i]=(i*<=n);
sonofbitch[][i]=; small[i]=i;}
for (int j=;j<=lp && 1ll*i*prime[j]<=n;j++)
{
notprime[i*prime[j]]=; small[i*prime[j]]=prime[j];
if (i%prime[j])
{
phi[i*prime[j]]=phi[i]*(prime[j]-);
sonofbitch[][i*prime[j]]=sonofbitch[][i]+(prime[j]*<=n);
sonofbitch[][i*prime[j]]=sonofbitch[][i]+;
}
else
{
phi[i*prime[j]]=phi[i]*prime[j];
sonofbitch[][i*prime[j]]=sonofbitch[][i];
sonofbitch[][i*prime[j]]=sonofbitch[][i];
break;
}
}
}
} int main()
{
scanf("%d",&n); pre(n);
#define LL long long
LL tot1=,tot2=,tot3=,m=n-(sum[][n]-sum[][n])-,tot=m*1ll*(m-)/; for (int i=;i<=n;i++) tot1+=i--phi[i]; for (int i=;i<=n;i++)
if (notprime[i])
tot2+=phi[i]-sum[][i]+sonofbitch[][i]-+sum[][n/small[i]]-sonofbitch[][i];
else if (i*<=n) tot2+=sum[][min(i-,n/i)]; tot3=tot-tot1-tot2; printf("%lld\n",tot1+tot2*+tot3*);
return ;
}
Codeforces870F. Paths的更多相关文章
- [LeetCode] Binary Tree Paths 二叉树路径
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [LeetCode] Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- leetcode : Binary Tree Paths
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- LeetCode-62-Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- Leetcode Unique Paths II
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- soj 1015 Jill's Tour Paths 解题报告
题目描述: 1015. Jill's Tour Paths Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Every ...
随机推荐
- ALTER GROUP - 修改一个用户组
SYNOPSIS ALTER GROUP groupname ADD USER username [, ... ] ALTER GROUP groupname DROP USER username [ ...
- Python之__class__.__module__,__class__.__name__
- css 动态导入css文件 @import 动态js加载 都是静态的
@import "http://apps.bdimg.com/libs/bootstrap/3.3.4/css/bootstrap.css" /*-防止各大cdn公共库加载地址失效 ...
- JavaSE-22 反射
学习要点 反射概念 反射的应用 反射概述 1 反射机制 定义 Java反射机制是指在程序在运行状态中,动态获取信息以及动态调用对象方法的功能. Java反射的动态性质:运行时生成对象实例.运行期间调 ...
- python appium自动化,走过的坑
使用的夜神模拟器,使用android5.1.1 第一坑:使用的android7.1.2,刚开始写好了登录的代码,需要的是滑屏进入到登录界面,结果运行的时候,没有自动滑屏就报错:因为运行时,报了一个进程 ...
- RestTemplate接收HashMap变为LinkedHashMap,RestTemplate接收数据后转成json数据出现反斜杠
使用postForObject方法远程调用接口,正常会返回List<HashMap>,然而实际上却返回List<LinkedHashMap>,同时将此数据进行json转换,变成 ...
- 多线程之Java中的等待唤醒机制
多线程的问题中的经典问题是生产者和消费者的问题,就是如何让线程有序的进行执行,获取CPU执行时间片的过程是随机的,如何能够让线程有序的进行,Java中提供了等待唤醒机制很好的解决了这个问题! 生产者消 ...
- vue set方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- linux系统查看网络连接情况
netstat命令状态说明: CLOSED 没有使用这个套接字[netstat 无法显示closed状态] LISTEN 套接字正在监听连接[调用listen ...
- 零基础入门学习Python(32)--异常处理:你不可能总是对的
知识点 即便Python程序的语法是正确的,在运行它的时候,也有可能发生错误.运行期检测到的错误被称为异常. 大多数的异常都不会被程序处理,都以错误信息的形式展现在这里: Python标准异常总结 序 ...