华为OJ2288-合唱队(最长递增子序列)
一、题目描述
描述:
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,则他们的身高满足T1 < T2 < … < Ti , Ti > Ti+1 > … > TK (1 <= i <= K) 。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入:
第一行整数 N,表示同学的总数
第二行整数数组,空格隔开,表示 N 位同学身高
输出:
最少需要几位同学出列
样例输入:
8
186 186 150 200 160 130 197 200
样例输出:
4
二、最长递增子序列
最长递增子序列(Longest Increasing Subsequence)是指找到一个给定序列的最长子序列的长度,使得子序列中的所有元素单调递增。
例如:{ 3,5,7,1,2,8 } 的 LIS 是 { 3,5,7,8 },长度为 4。
解法一:转化为求最长公共子序列
其实可以把 求最长递增子序列问题 转化为 求最长公共子序列的问题。
- 设数组 { 3, 5, 7, 1, 2, 8 } 为 A
- 对数组 A 排序,排序后的数组为 B = { 1, 2, 3, 5, 7, 8 }。
- 于是,求数组 A 的最长递增子序列,就是求数组 A 与数组 B 的最长公共子序列。
最长公共子序列的求法见《动态规划DP》。本方法的时间复杂度是
解法二:动态规划法
虽然解法一也是使用动态规划,但是与解法一不同的是,解法二不进行转化,而是直接在原问题上采用动态规划法。
最优子结构:
对于长度为 N 的数组 A[N]={a0,a1,a2,…,an−1},假设我们想求以 ai 结尾的最大递增子序列长度,设为L[i],那么
也就是 j 的范围是 0 到 i–1。这样,想求 ai 结尾的最大递增子序列的长度,我们就需要遍历 i 之前的所有位置 j(0到 i-1),找出A[j]<A[i],计算这些 j 中,能产生最大 L[j] 的 j,之后就可以求出 L[i]。之后对每一个A[N]中的元素都计算以他们各自结尾的最大递增子序列的长度,这些长度的最大值,就是我们要求的问题——数组A的最大递增子序列的长度。
重叠子问题:
根据上述推导式采用递归实现的话,有些子问题会被计算很多次。
动态规划法:
综上所述,LIS 问题具有动态规划需要的两个性质,可以使用动态规划求解该问题。设数组 A = { 3,5,7,1,2,8 },则:
具体的打表方式如下:
- 初始化对角线为 1;
- 对每一个 i,遍历 j(0 到 i-1):
- 若
A[i] <= A[j]
,置 1。 - 若
A[i] > A[j]
,取第 j 行的最大值加 1。
- 若
打完表以后,最后一行的最大值就是最长递增子序列的长度。由于每次都进行遍历,故时间复杂度还是 Θ(n2) 。
通常在实现的时候我们不会创建一整个表,因为这样太浪费空间。由打表的过程可知,我们只需要一个一维数组来保存每一行的最大值即可:
// LIS 的动态规划方式实现
#include <iostream>
using namespace std;
int getLISLength(int A[], int len)
{
/* 一维数组 */
int* lis = new int[len];
/* 初始化为1 */
for (int i = 0; i < len; ++i)
lis[i] = 1;
/* 计算每个i对应的lis最大值,即打表的过程 */
for (int i = 1; i < len; ++i)
for (int j = 0; j < i; ++j) // 0到i-1
if ( A[i] > A[j] && lis[i] < lis[j]+1)
lis[i] = lis[j] + 1; // 更新
/* 数组中最大的那个,就是最长递增子序列的长度 */
int maxlis = 0;
for (int i = 0; i < len; ++i)
if ( maxlis < lis[i] )
maxlis = lis[i];
delete [] lis;
return maxlis;
}
int main()
{
int arr[] = {3, 5, 7, 1, 2, 8};
cout << getLISLength(arr, 6) << endl;
return 0;
}
解法三:Θ(nlgn)的方案
本解法的具体操作如下:
- 开一个栈,依次读取数组元素 x 与栈顶元素 top:
- 如果 x > top,将 x 入栈;
- 如果 x < top,则二分查找栈中第一个 大于等于x 的数,并用 x 替换它。
遍历结束之后,最长递增序列长度即为栈的大小。
int getLISLength(int A[], int len)
{
vector<int> v; // 模拟栈
for(int i=0; i<len; ++i)
{
if(v.size()==0 || v.back()<A[i])
v.push_back(A[i]);
else // 二分查找
{
int mid, low=0, high=v.size()-1;
while(low<high)
{
mid = (low+high)/2;
if(v[mid] < A[i])
low = mid + 1;
else
high = mid - 1;
}
v[low] = A[i]; // 替换
}
}
return v.size();
}
由于使用了二分搜索,故时间复杂度变成了 Θ(nlgn)。
特别注意的是:本方法只能用于求最长递增子序列的长度,千万不要以为栈中的序列就是最长递增子序列:
例一:原序列为1,5,8,3,6,7
栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。例二:原序列为1,5,8,3
则最终栈为1,3,8。明显这不是最长递增子序列!
三、解题报告
根据题意可知,我们需要求出一个“中间点”,使得其左边的【最长递增子序列】和其右边的【最长递减子序列】之和最大。
#include <iostream>
using namespace std;
int main()
{
int len;
cin >> len;
int *A = new int[len];
for(int i=0; i<len; ++i)
cin >> A[i];
// lis[i]表示以A[i]为结尾的最长递增子序列的长度
int *lis = new int[len];
// lds[i]表示以A[i]为起点的最长递减子序列的长度
int *lds = new int[len];
for (int i = 0; i < len; ++i)
{
lis[i] = 1;
lds[i] = 1;
}
for(int i=1; i<len; ++i)
for(int j=0; j<i; ++j)
if(A[i] > A[j] && lis[i] < lis[j]+1)
lis[i] = lis[j] + 1;
for(int i=len-2; i>=0; --i)
for(int j=len-1; j>i; --j)
if(A[i] > A[j] && lds[i] < lds[j]+1)
lds[i] = lds[j] + 1;
int maxl = 0;
for(int i=0; i<len; ++i)
if(maxl < lis[i]+lds[i])
maxl = lis[i] + lds[i];
cout << len - maxl + 1 << endl;
delete [] lis;
delete [] lds;
delete [] A;
return 0;
}
华为OJ2288-合唱队(最长递增子序列)的更多相关文章
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 【动态规划】拦截导弹_dilworth定理_最长递增子序列
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec 内存限制: 256 MB提交: 39 解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...
- COGS731 [网络流24题] 最长递增子序列(最大流)
给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...
随机推荐
- UI概念体系要素
结构.渲染.交互.数据. 要素.呈现.交互 1)UI(组成)要素:结构 2)布局: 3)渲染: 4)事件处理: 5)数据:
- group by 和 聚合函数的使用
有这样一个表数据: 学生姓名,学生手机号,上课日期,上课科目 科目分: 语文.数学.英语.计算机 要求统计一个这样子的结果: 学生姓名,学生手机号,第一次上课日期,迄今一共上了多少节课,上的最多的科目 ...
- 查看DNS、IP、Mac等
A.Win98:winipcfg B.Win2000以上:Ipconfig/all C.NSLOOKUP:如查看河北的DNS C:\\>nslookup Default Server: ...
- Webstorm 的 Tab 键调整缩进值
两步即可,注意版本
- JAVA基础——设计模式之观察者模式
观察者模式是对象的行为模式,又叫发布-订阅(Publish/Subscribe)模式.模型-视图(Model/View)模式.源-监听器(Source/Listener)模式或从属者(Dependen ...
- Map集合遍历的方式(以HashMap为例)
环境:jdk1.8 HashMap的遍历方式有多种,下面将会一一列出. 首先我们先在HashMap中添加几个键值对. HashMap<Integer, String> map = new ...
- Linux系统用户、组和权限管理
一.用户与组 1.用户与组的概念 在linux系统中,根据系统管理需要将用户分为三种类型: 1.超级用户:root是linux系统的超级用户,对系统拥有绝对权限.由于root用户权限太大,只有在进行系 ...
- cookie和session的区别及session的生命周期
这些都是基础知识,不过有必要做深入了解.先简单介绍一下. 二者的定义: 当你在浏览网站的时候,WEB 服务器会先送一小小资料放在你的计算机上,Cookie 会帮你在网站上所打的文字或是一些选择,都纪录 ...
- win10下安装psql9,后无法访问数据库引擎
1.修改安装文件兼容性,并启动安装 2.安装后 修改psql control center快捷方式的启动文件兼容性 3.修改 start workgroup engine 快捷方式的启动文件兼容性 一 ...
- 数据结构代码实现之队列的链表实现(C/C++)
上班闲着无聊,一直想着要开始写博客,但又不知道写什么.最近又回顾了下数据结构的知识,那就从数据结构开始吧. 前言 关于C语言结构体的知识以及队列的特性请读者自行了解,此处不做过多解释,嘻嘻. 同时此篇 ...