create table t_access_times(username string,month string,salary int)
row format delimited fields terminated by ',';

load data local inpath '/root/hivedata/t_access_times.dat' into table t_access_times;

A,2015-01,5
A,2015-01,15
B,2015-01,5
A,2015-01,8
B,2015-01,25
A,2015-01,5
A,2015-02,4
A,2015-02,6
B,2015-02,10
B,2015-02,5

1、第一步,先求个用户的月总金额
select username,month,sum(salary) as salary from t_access_times group by username,month

+-----------+----------+---------+--+
| username | month | salary |
+-----------+----------+---------+--+
| A | 2015-01 | 33 |
| A | 2015-02 | 10 |
| B | 2015-01 | 30 |
| B | 2015-02 | 15 |
+-----------+----------+---------+--+

2、第二步,将月总金额表 自己连接 自己连接
select A.*,B.* FROM
(select username,month,sum(salary) as salary from t_access_times group by username,month) A
inner join
(select username,month,sum(salary) as salary from t_access_times group by username,month) B
on
A.username=B.username
where B.month <= A.month
+-------------+----------+-----------+-------------+----------+-----------+--+
| a.username | a.month | a.salary | b.username | b.month | b.salary |
+-------------+----------+-----------+-------------+----------+-----------+--+
| A | 2015-01 | 33 | A | 2015-01 | 33 |
| A | 2015-01 | 33 | A | 2015-02 | 10 |
| A | 2015-02 | 10 | A | 2015-01 | 33 |
| A | 2015-02 | 10 | A | 2015-02 | 10 |
| B | 2015-01 | 30 | B | 2015-01 | 30 |
| B | 2015-01 | 30 | B | 2015-02 | 15 |
| B | 2015-02 | 15 | B | 2015-01 | 30 |
| B | 2015-02 | 15 | B | 2015-02 | 15 |
+-------------+----------+-----------+-------------+----------+-----------+--+

3、第三步,从上一步的结果中
进行分组查询,分组的字段是a.username a.month
求月累计值: 将b.month <= a.month的所有b.salary求和即可
select A.username,A.month,max(A.salary) as salary,sum(B.salary) as accumulate
from
(select username,month,sum(salary) as salary from t_access_times group by username,month) A
inner join
(select username,month,sum(salary) as salary from t_access_times group by username,month) B
on
A.username=B.username
where B.month <= A.month
group by A.username,A.month
order by A.username,A.month;

大数据学习——面试用sql——累计报表的更多相关文章

  1. 大数据学习资料之SQL与NOSQL数据库

    这几年的大数据热潮带动了一激活了一大批hadoop学习爱好者.有自学hadoop的,有报名培训班学习的.所有接触过hadoop的人都知道,单独搭建hadoop里每个组建都需要运行环境.修改配置文件测试 ...

  2. 大数据学习——hive的sql练习题

    ABC三个hive表 每个表中都只有一列int类型且列名相同,求三个表中互不重复的数 create table a(age int) row format delimited fields termi ...

  3. 大数据学习——hive的sql练习

    1新建一个数据库 create database db3; 2创建一个外部表 --外部表建表语句示例: create external table student_ext(Sno int,Sname ...

  4. 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF

    1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...

  5. 大数据学习day26----hive01----1hive的简介 2 hive的安装(hive的两种连接方式,后台启动,标准输出,错误输出)3. 数据库的基本操作 4. 建表(内部表和外部表的创建以及应用场景,数据导入,学生、分数sql练习)5.分区表 6加载数据的方式

    1. hive的简介(具体见文档) Hive是分析处理结构化数据的工具   本质:将hive sql转化成MapReduce程序或者spark程序 Hive处理的数据一般存储在HDFS上,其分析数据底 ...

  6. 大数据学习系列之五 ----- Hive整合HBase图文详解

    引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...

  7. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  8. 大数据学习之Hadoop快速入门

    1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效 ...

  9. 大数据学习路线,来qun里分享干货,

    一.Linux lucene: 全文检索引擎的架构 solr: 基于lucene的全文搜索服务器,实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面. 推荐一个大数据学习群 ...

随机推荐

  1. 线段树(单点更新) HDU 1754 I Hate It

    题目传送门 /* 线段树基本功能:区间最大值,修改某个值 */ #include <cstdio> #include <cstring> #include <algori ...

  2. Linux、Windows 下分割、合并rar文件

    1.分割rar 1.1 linux下分割压缩rar 安装rar和unrar和序 $sudo aptitude install rar unrar 示例,分割压缩temp文件,每个包为1MB $rar ...

  3. P2142 高精度减法

    题目描述 高精度减法 输入输出格式 输入格式: 两个整数a,b(第二个可能比第一个大) 输出格式: 结果(是负数要输出负号) 输入输出样例 输入样例#1: 2 1 输出样例#1: 1 说明 20%数据 ...

  4. 【学习笔记】彻底理解JS中的this

    首先必须要说的是,this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象(这句话有些问题,后面会解释为什么会有问题,虽然 ...

  5. arttemplate模板引擎有假数据返回数据多层内嵌的渲染方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 让WPS10显示为offic97效果

    让WPS10显示为offic97效果2019/1/26 22:02 OS:win7 64位使用的WPS_10.1.0.5603_setup.1460689247.exe 衣不如旧,人不如新.最开始接触 ...

  7. Android小玩意儿-- 从头开发一个正经的MusicPlayer(三)

    MusicService已经能够接收广播,通过广播接收的内容来做出相应的MediaPlayer对象的处理,包括播放,暂停,停止等,并当MediaPlayer对象的生命周期发生变化的时候,同样通过发送广 ...

  8. Linux 从源码编译安装 Nginx

    Nginx 是一个高性能的 HTTP 和 反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器.Nginx 编译安装比较简单,难点在于配置.下面是 Nignx 0.8.54 编译安装和简 ...

  9. 里特定律 - Little's Law

    里特定律(Little's Law)源自排队理论,是IT系统性能建模中最广为人知的定律. 里特定律揭示了前置时间(Lead Time).在制品数量(Work In Progress, WIP)和吞吐率 ...

  10. tac命令

    tac——显示文件内容(反列显示) 命令所在路径:/usr/bin/tac 示例1: # tac /etc/hosts 反列显示/etc/目录下hosts文件内容 ☛适合查看内容较短的文件