题目大意:

从文件中输入P(1000<P<3100000),计算2^P−1的位数和最后500位数字(用十进制高精度数表示)

思路:

一道高精度练习题

其中位数是一个结论 位数=[P*log2]+1

然后就是高精度,因为作死的压位打了好久

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define inf 2139062143
#define ll long long
#define MAXN 6010
#define MOD 10000
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
struct bign
{
int len,num[];
bign(){len=;memset(num,,sizeof(num));}
void Print()
{
for(int i=;i>;i--)
if(i%==) printf("%02d\n%02d",num[i]/,num[i]%);
else if(i%==) printf("%04d\n",num[i]);
else printf("%04d",num[i]);
printf("%04d",num[]-);
}
};
bign mul(bign a,bign b)
{
bign res;int t;
//cout<<"a: ";a.Print();cout<<"b: ";b.Print();
for(int i=;i<=a.len;i++)
for(int j=;j<=b.len;j++)
{
t=a.num[i]*b.num[j];
if(i+j<=)
if(i+j<) res.num[i+j]+=t,res.num[i+j+]+=res.num[i+j]/MOD,res.num[i+j]%=MOD;
else res.num[i+j]+=t,res.num[i+j]%=MOD;
}
for(int i=;i<=;i++)
if(res.num[i]) res.len=i;
return res;
}
void q_pow()
{
bign ans,t;ans.num[]=,t.num[]=;
while(n)
{
if(n&) ans=mul(ans,t);
t=mul(t,t);
n>>=;
}
ans.Print();
}
int main()
{
n=read();
printf("%d\n",(int)(n*0.30103)+);
q_pow();
}

luogu 1045 麦森数的更多相关文章

  1. 【03NOIP普及组】麦森数(信息学奥赛一本通 1925)(洛谷 1045)

    [题目描述] 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它 ...

  2. NOIP200304麦森数

    试题描述 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...

  3. 【转】[NOIP2003普及组]麦森数

    来源:http://vivid.name/tech/mason.html 不得不纪念一下这道题,因为我今天一整天的时间都花到这道题上了.因为这道题,我学会了快速幂,学会了高精度乘高精度,学会了静态查错 ...

  4. vijosP1223麦森数

    vijosP1223麦森数 链接:https://vijos.org/p/1223 [思路] 快速幂+高精乘. 计算2^p-1可以快速幂的方法在O(logn)的时间内出解,限于数据范围我们需要用到高精 ...

  5. 【高精度乘法】NOIP2003麦森数

    题目描述 形如2^{P}-12P−1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12P−1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的 ...

  6. 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂

    洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...

  7. TZOJ 4839 麦森数(模拟快速幂)

    描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...

  8. 洛谷 P1045 麦森数

    题目描述 形如2^{P}-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...

  9. [NOIP2003普及组]麦森数(快速幂+高精度)

    [NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998 ...

随机推荐

  1. 17Oracle Database 维护

    Oracle Database 维护 备份 还原

  2. A1. JVM 内存区域

    [概述] 在这篇笔记中,需要描述虚拟机中的内存是如何划分的,哪部分区域.什么样的代码和操作可能导致内存溢出异常.虽然 Java 有垃圾处理机制,但是如果生产环境在出现内存溢出异常时,由于开发人员不熟悉 ...

  3. Eureka组件、Eureka自我保护模式

    Eureka包含两个组件:Eureka Server和Eureka Client   Eureka Server提供服务发现的能力,各个微服务启动时,会向Eureka Server注册自己的信息(例如 ...

  4. LeetCode15——3Sum

    数组中找三个数和为0的结果集 1 // 解法一:先排序 然后固定一个值 然后用求两个数的和的方式 public static List<List<Integer>> three ...

  5. P1060 开心的金明(洛谷,动态规划递推,01背包轻微变形题)

    题目链接:P1060 开心的金明 基本思路: 基本上和01背包原题一样,不同点在于这里要的是最大重要度*价格总和,我们之前原题是 f[j]=max(f[j],f[j-v[i]]+p[i]); 那么这里 ...

  6. Java对象序列化为什么要使用SerialversionUID

    1.首先谈谈为什么要序列化对象 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通 ...

  7. 洛谷 1012 拼数(NOIp1998提高组)

    [题解] 我们要做的就是把这些数排序.排序的时候判断两个数是否交换的方法,就是把这两个数相接形成两个长度相同的数字,比较这两个数字的大小. #include<cstdio> #includ ...

  8. 洛谷 4216 BZOJ 4448 [SCOI2015]情报传递

    [题解] 每个情报员的危险值val[i]应该是一个分段函数,前面一段是平行于x轴的横线,后面一段是一次函数.我们可以用fx(t)=t-b[x]表示这个一次函数.每次询问一条链上fx(t)大于c的点的个 ...

  9. LA 3029 Subsequence

    LA 3029 A sequence of N positive integers (10 < N < 100 000), each of them less than or equal ...

  10. layui laypage 当前页刷新问题

    困扰了好几天的问题,终于找到答案了 在执行完代码后添加下面的代码实现当前页的刷新 $(".layui-laypage-btn").click(); 在解决问题的过程中,其实已经注意 ...