[Bzoj2500]幸福的道路(树上最远点)
2500: 幸福的道路
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 474 Solved: 194
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
数据范围:
50%的数据N<=1000
80%的数据N<=100 000
100%的数据N<=1000 000
HINT
分析:
比较容易分析的题目。
求每个点的树上最远距离
后面的处理连续天数因为具有传递性是O(n)的。
用优先队列模拟出multiset,总复杂度O(nlogn)
AC代码:
# include <iostream>
# include <cstdio>
# include <queue>
using namespace std;
typedef long long LL;
const int N = 1e6 + ;
int head[N],dt,n,mn[N],Log[];LL m,f1[N],f2[N],g[N];
struct Edge{
int to,nex;LL w;
}edge[N];
struct Heap{
priority_queue<LL> A,B;
void insert(LL x){A.push(x);}
void erase(LL x){B.push(x);}
void pop(){while(!B.empty() && A.top() == B.top())A.pop(),B.pop();}
LL top(){pop();return A.top();}
int size(){return A.size() - B.size();}
}A,B;
void AddEdge(int u,int v,LL w)
{
edge[++dt] = (Edge){v,head[u],w};
head[u] = dt;
}
void dfs(int u)
{
f1[u] = f2[u] = ;
for(int i = head[u];i;i = edge[i].nex)
{
dfs(edge[i].to);
LL tmp = f1[edge[i].to] + edge[i].w;
if(tmp >= f1[u])
{
f2[u] = f1[u];
f1[u] = tmp;
}
else f2[u] = max(f2[u],tmp);
}
}
void Dfs(int u)
{
for(int i = head[u];i;i = edge[i].nex)
{
if(f1[u] == f1[edge[i].to] + edge[i].w)
g[edge[i].to] = max(f2[u],g[u]) + edge[i].w;
else g[edge[i].to] = max(f1[u],g[u]) + edge[i].w;
Dfs(edge[i].to);
}
}
int main()
{
scanf("%d %lld",&n,&m);int x;LL y;
for(int i = ;i <= n;i++)scanf("%d %lld",&x,&y),AddEdge(x,i,y);
dfs();Dfs();
for(int i = ;i <= n;i++)g[i] = max(g[i],f1[i]);
A.insert(g[]);B.insert(-g[]);int r = ,ans = ;
for(int i = ;i <= n;i++)
{
LL mi = r == i ? g[i] : -B.top(),mx = r == i ? g[i] : A.top();
while(r <= n)
{
mx = max(mx,g[r]);
mi = min(mi,g[r]);
if(mx - mi <= m)A.insert(g[r]),B.insert(-g[r]),r++;
else break;
}
A.erase(g[i]);B.erase(-g[i]);
ans = max(ans,r - i);
}
printf("%d\n",ans);
}
[Bzoj2500]幸福的道路(树上最远点)的更多相关文章
- BZOJ2500: 幸福的道路
题解: 一道不错的题目. 树DP可以求出从每个点出发的最长链,复杂度O(n) 然后就变成找一个数列里最长的连续区间使得最大值-最小值<=m了. 成了这题:http://www.cnblogs.c ...
- bzoj2500幸福的道路 树形dp+单调队列
2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 434 Solved: 170[Submit][Status][Discuss ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- bzoj 2500 幸福的道路 树上直径+set
首先明确:树上任意一点的最长路径一定是直径的某一端点. 所以先找出直径,求出最长路径,然后再求波动值<=m的最长区间 #include<cstdio> #include<cst ...
- 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法
[BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...
- 【BZOJ】【2500】幸福的道路
树形DP+单调队列优化DP 好题(也是神题……玛雅我实在是太弱了TAT,真是一个250) 完全是抄的zyf的……orz我还是退OI保平安吧 第一步对于每一天求出一个从第 i 个点出发走出去的最长链的长 ...
- [BZOJ 2500] 幸福的道路
照例先贴题面(汪汪汪) 2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 368 Solved: 145[Submit][Sta ...
- csu 1798(树上最远点对,线段树+lca)
1798: 小Z的城市 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 60 Solved: 16[Submit][Status][Web Board] ...
- 【bzoj2500】幸福的道路 树形dp+单调队列
Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...
随机推荐
- [转] Figuring out why my SVCHOST.EXE is at 100% CPU without complicated tools in Windows 7
(转自:Figuring out why my SVCHOST.EXE is at 100% CPU without complicated tools in Windows 7 - Scott Ha ...
- Types of Security Vulnerabilities
1)内存空间安全.2)参量级别数据安全:3)通信级别数据安全:4)数据访问控制:5)通信对象身份确认. https://developer.apple.com/library/content/docu ...
- Animate.css_css3动画库介绍
插件描述:Animate.css内置了很多典型的css3动画,兼容性好使用方便. Animate.css是一个有趣的,跨浏览器的css3动画库.很值得我们在项目中引用. 用法 1.首先引入animat ...
- QT+ 状态栏+核心控件+浮动窗口
#include "mainwindow.h" #include <QStatusBar> #include <QLabel> #include<QT ...
- spring注解开发-AOP(含原理)
一:AOP基本使用 AOP指在程序运行期间动态的将某段代码切入到指定方法指定位置进行运行的编程方式: 步骤一:导入aop模块:Spring AOP:(spring-aspects) <depen ...
- 标准库中的智能指针shared_ptr
智能指针的出现是为了能够更加方便的解决动态内存的管理问题.注:曾经记得有本书上说可以通过vector来实现动态分配的内存的自动管理,但是经过试验,在gcc4.8.5下是不行的.这个是容易理解的,vec ...
- [JOYOI] 1124 花店橱窗
题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目背景 xq和他的老婆xz最近开了一家花店,他们准备把店里最好看的花都摆在橱窗里.但是他们 ...
- 解决CSDN阅读全部需要登录的问题
现在CSDN网站每次点击“阅读全部”的时候,必须要登录才能展开,很不方便.解决方法如下:点击F12打开开发者工具,点击Console,将下面两行代码粘贴进去即可: $("div.articl ...
- kvm客户机存储方式
前面介绍了存储的配置和qemu-img工具来管理镜像,在QEMU/KVM中,客户机镜像文件可以由很多种方式来构建,其中几种如下: 1) 本地存储的客户机镜像文件. 2) 物理磁盘或磁盘分区. 3) L ...
- QEMU支持的几种常见的镜像文件格式
qemu-img支持非常多种的文件格式,可以通过"qemu-img -h"查看其命令帮助得到,它支持二十多种格式:blkdebug.blkverify.bochs.cloop.c ...