Memory Limit: 131072KB   64bit IO Format: %lld & %llu

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

Hint

 

Source

SDOI2012

BZOJ挂了,目前只过了样例,没有测试。

是 http://www.cnblogs.com/SilverNebula/p/5926270.html 这道题的强化版本,数据范围达到了1e6,同时t可能出现负值(强行时间倒流),这使得原本的公式不能保证斜率单调。

解决办法是不弹队头,保留所有位置,每次二分查找斜率最大位置。

——然而神tm我不管写什么算法,加上二分就WA,这次只是加个二分,又调了20分钟才过样例。

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
using namespace std;
const int mxn=1e6+;
long long read(){
long long x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL n;
LL s;
LL t[mxn],f[mxn];
LL sumt[mxn],sumf[mxn];
LL dp[mxn];
int q[mxn];
LL gup(int j,int k){
return (dp[j]-dp[k]);
}
LL gdown(int j,int k){
return sumf[j]-sumf[k];
}
LL gdp(int i,int j){
return dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]);
}
int main(){
n=read();s=read();
int i,j;
for(i=;i<=n;i++){
t[i]=read();f[i]=read();
sumt[i]=sumt[i-]+t[i];
sumf[i]=sumf[i-]+f[i];
}
memset(dp,0x3f,sizeof dp);
dp[]=;
int hd=,tl=;
q[hd]=;
for(i=;i<=n;i++){
int l=,r=tl;
while(l<r){
int mid=(l+r)>>;
if( ((double)dp[q[mid+]]-dp[q[mid]])>=(double)(s+sumt[i])*(sumf[q[mid+]]-sumf[q[mid]]))r=mid;
else l=mid+;
}
dp[i]=min(dp[i],gdp(i,q[l]));
printf("i:%d %lld\n",i,gup(i,q[l])/gdown(i,q[l]));
while(hd<tl && gup(i,q[tl])*gdown(q[tl],q[tl-])<=gup(q[tl],q[tl-])*gdown(i,q[tl]) )tl--;
q[++tl]=i;
}
printf("%lld",dp[n]);
return ;
}

Bzoj 2726 SDOI 任务安排的更多相关文章

  1. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  2. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  3. bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...

  4. bzoj 2726: [SDOI2012]任务安排【cdq+斜率优化】

    cdq复健.jpg 首先列个n方递推,设sf是f的前缀和,st是t的前缀和: \[ f[i]=min(f[j]+s*(sf[n]-sf[j])+st[i]*(sf[i]-sf[j])) \] 然后移项 ...

  5. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

  6. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  7. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  8. BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  9. [bzoj P2726] [SDOI2012]任务安排

    [bzoj P2726] [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1204 Solved: 349[Submit] ...

随机推荐

  1. Java GUI 基础组件

    1.JLabel  标签 构造函数: JLabel() JLabel(String text) JLabel(String text,int align)     //第二个参数设置文本的对齐方式,常 ...

  2. java实现课堂随机点名小程序

    通过jdbc连接数据库实现读取学生花名册进行随机点名! ~jdbc连接mysql数据库  ||  注释部分代码可通过读取.txt文档实现显示学生信息 ~通过点击开始按钮实现界面中间标签不断更新学生信息 ...

  3. Android Studio V4 V7 包冲突的问题

    最近被包冲突的问题搞奔溃了,特别是V4,V7 V4和V7包冲突的解决方式就是!版本要一致!! 比如我的一个项目中应用本来是这样引用包的 compile 'com.android.support:sup ...

  4. appium学习链接记录

    乙醇大师的园子: http://www.cnblogs.com/nbkhic/tag/appium/ webDriver java版 https://github.com/easonhan007/we ...

  5. TFS强制删除离职人员签出锁定项的方法(转)

      项目组一哥们走的时候以独占方式迁出了文件,现在其他人都无法修改,管理员似乎也无法将文件解除.经过摸索,找到了一种暴力的方法——直接改TFS数据库.虽然暴力,却能实实在在地解决这个问题. 步骤: 1 ...

  6. 微软将于12月起开始推送Windows 10 Mobile

    [环球科技报道 记者 陈薇]据瘾科技网站10月8日消息,根据微软Lumia官方Faceboo发布的消息,新版系统Windows 10 Mobile 将会12月起陆续开始推送. 推送的具体时程根据地区. ...

  7. 51nod 1432 独木舟

    基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 n个人,已知每个人体重.独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两个人.显然要求总重量不超过独木舟承 ...

  8. 善用Object.defineProperty巧妙找到修改某个变量的准确代码位置

    我今天的工作又遇到一个难题.前端UI右下角这个按钮被设置为"禁用(disabled)"状态. 这个按钮的可用状态由属性enabled控制.我通过调试发现,一旦下图第88行代码执行完 ...

  9. DB9串口引脚定义

    在单片机串口通信中,使用3根信号线就能够实现通信:RXD,TXD,GND. 经常使用的RS232串口线使用DB9端子. DB9分为公头和母头两种: 一般使用时,引脚定义如下: 连接方式: 注:RXD- ...

  10. iview modal 点击打开窗口,打开前先销毁里面的内容再打开

    <Modal v-model="addSubOrgModal" @on-cancel="addSubOrgCancel" @on-visible-chan ...