自动构造词法分析器的步骤——正规式转换为最小化DFA
- 正规式——》最小化DFA
1.先把正则式——》NFA(非确定有穷自动机)
涉及一系列分解规则
2.再把NFA通过"子集构造法"——》DFA
通过子集构造法将NFA转化为DFA
将表里的变量名用比较简单的符号代替(最好是在进行构造的时候顺手在草稿纸上标记好,方便后面的工作)
对照上面的表,画出DFA的状态转换图
图中0,1,2,3,4,5都是终态,因为他们的集合里都包含了最初的终态“数字9”。
3.再把DFA通过"分割法”进行最小化
- 消除多余状态
从这个状态没有通路到达终态;S1
从开始状态出发,任何输入串也不能到达的那个状态。S2
- 合并等价状态
采用“分割法”
兼容性(一致性)条件——同是终态或同是非终态
传播性(蔓延性)条件——对于所有输入符号,状态s和状态t必须转换到等价的状态里。
DFA的最小化—例子,第一步都是固定的。分成终态和非终态
1.将M的状态分为两个子集一个由终态k1={C,D,E,F}组成,一个由非终态k2={S,A,B}组成,
2.考察{S,A,B}是否可分.
因为A经过a到达C属于k1.而S经过a到达A属于k2.B经过a到达A属于k2,所以K2继续划分为{S,B},{A},
3.考察{S,B}是否可再分:
B经过b到达D属于k1.S经过b到达B属于k2,所以S,B可以划分。划分为{S},{B}
4.考察{C,D,E,F}是否可再分:
因为C,D,E,F经过a和b到达的状态都属于{C,D,E,F}=k1所以相同,所以不可再分:
5.{C,D,E,F}以{D}来代替则,因为CDEF相同,你也可以用C来代替。无所谓的最小化的DFA如图,:
“后面这些内容鄙人以为书上都有,列出来整理一下思路、多加练习即可,不必浪费时间敲到电脑上”
- 正则表达式——》正则文法
- 令开始符号为S,S属于非终结符集,VT等于字符集
- 先生成正规产生式S->r
- 再分解正规产生式S->r,分解规则如下:
(R.1)对形如A->r1r2的正规产生式分解为
·
A->r1B,B->r2,B属于非终结符
(R.2)对形如A->r1*r2的正规产生式分解为
- 正则文法——》正则表达式
- 有限自动机——》正则表达式
- 正则表达式——》有限自动机
自动构造词法分析器的步骤——正规式转换为最小化DFA的更多相关文章
- 正规式->最小化DFA说明
整体的步骤是三步: 一,先把正规式转换为NFA(非确定有穷自动机), 二,在把NFA通过"子集构造法"转化为DFA, 三,在把DFA通过"分割法"进行最小化 ...
- 《编译原理》构造与正规式 (0|1)*01 等价的 DFA - 例题解析
<编译原理>构造与正规式 (0|1)*01 等价的 DFA - 例题解析 解题步骤: NFA 状态转换图 子集法 DFA 的状态转换矩阵 DFA 的状态转图 解: 已给正规式:(0|1)* ...
- 报错:无法将类型"System.Data.EntityState"隐式转换为"System.Data.Entity.EntityState"
报错:无法将类型"System.Data.EntityState"隐式转换为"System.Data.Entity.EntityState". 出错语句停留 ...
- 正规式α向有限自动机M的转换
[注:这一节是在学习东南大学廖力老师的公开课时,所记录的一些知识点截屏,谢谢廖力老师的辛劳付出] 引入3条正规式分裂规则来分裂α,所得到的是NFA M(因为包含ε弧,之后进行确定化就是所需要求得DF ...
- 有穷自动机(NFA、DFA)&正规文法&正规式之间的相互转化构造方法
在编译原理(第三版清华大学出版社出版)中第三章的词法分析中,3.4.3.5.3.6小节中分别讲解了 1.什么是NFA(不确定的有穷自动机)和DFA(确定的有穷自动机) 2.如何将 不确定的有穷自动机 ...
- 正规式与正规集,DFA与NFA
词法分析器的设计 词法分析器的功能:输入源程序.输出单词符号 词法分析器的设计:给出程序设计语言的单词规范--单词表, 对照单词表设计识别该语言所有单词的状态转换图, 根据状态转换图编写词法分析程序 ...
- using 语句中使用的类型必须可隐式转换为“System.IDisposable
在使用 EF 出现 using 语句中使用的类型必须可隐式转换为“System.IDisposable 今天写在这里分享给大家 出现这样的问题,是因为没有引用 EntityFramework 这个程 ...
- 编译原理:正规式转变成DFA算法
//将正规式转变成NFApackage hjzgg.formal_ceremony_to_dfa; import java.util.ArrayList; class Edge{ public int ...
- NHibernate无法将类型“System.Collections.Generic.IList<T>”隐式转换为“System.Collections.Generic.IList<IT>
API有一个需要实现的抽象方法: public IList<IPermission> GetPermissions(); 需要注意的是IList<IPermission>这个泛 ...
随机推荐
- Python模块:logging、
logging模块: 很多程序都有记录日志的需求,并且日志中包含的信息既有正常的程序访问日志,还可能有错误.警告等信息输出.Python的logging模块提供了标准的日志接口,你可以通过它存储各种格 ...
- Linux rz的使用
RZ是Linux提供的上传的命令,基于XMODEM/YMODEM/ZMODEM协议. 让我们来测试一下参数吧: 先准备一个文件,就叫test.txt吧,内容如下: one line rz -+ 如果 ...
- CF585E:Present for Vitalik the Philatelist
n<=500000个2<=Ai<=1e7的数,求这样选数的方案数:先从其中挑出一个gcd不为1的集合,然后再选一个不属于该集合,且与该集合内任意一个数互质的数. 好的统计题. 其实就 ...
- PHP上传文件限制修改
php.ini里面查看如下行: upload_max_filesize post_max_size memory_limit
- [bzoj1324]Exca王者之剑_最小割
Exca王者之剑 bzoj-1324 题目大意:题目链接. 注释:略. 想法: 最小割经典模型. 所有格子向源点连权值为格子权值的边. 将棋盘黑白染色后白点反转源汇. 如果两个格子相邻那么黑点向白点连 ...
- how to read openstack code : stevedore
学习了WSGI/Paste deploy后,还需要对一些在openstack中一些package有一些了解,才能更好的理解openstack的代码 What is stevedore 我们在写代码的时 ...
- 如何利用神经网络和Python生成指定模式的密码
今天给大家介绍的是Github上一个名叫PyMLProjects的项目,这个项目的目的是为了训练AI来学习人类构造密码的模式,然后我们就可以用AI来生成大量同一模式或种类的密码了.这种方法也许可以用来 ...
- Windows系统下JAVA开发环境搭建
首先我们需要下载JDK(JAVA Development Kit),JDK是整个java开发的核心,它包含了JAVA的运行环境,JAVA工具和JAVA基础的类库. 下载地址:http://www.or ...
- [Debug] Node-sass
Meet some problem when trying to install node-sass on windwos. Company has proxy settings, need to r ...
- js 获取文件本地路径
1.代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...