Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
解题思路:本题可用floyd或者spfa算法来判断是否有负环。题意:有f个农场,每个农场有n块地,其间有m条路,w条虫洞,穿过虫洞之后相应的时间会倒退t秒,问是否可以从某块地出发到达另一块地之后通过虫洞逆流时间回到当初出发的那个时间点。怎么建图呢?建m条双向边,边权为正数,建k条单向边,边权为负数(时光逆流)。显然,我们只需判断整个图中是否存在一个权值之和为负数的回路即可。因为若存在了负环,沿着回路走,时间就会不断地减少,那么FJ就肯定能遇到当初那个时刻出发的自己。
spfa核心思想:构建一个队列,将松弛成功且不在队列的点加入队列中,同时将顶点v的入队次数加1并标记为true,表示该顶点在当前队列中,避免后面的顶点重复入队造成更新时间上的浪费,然后每出队一个点就将其标记为false,因为出队的顶点可能会对前面已更新的点到源点的距离有影响并可能再次入队,这样直到队列为空。如果队列中的某个顶点入队次数超过n次,就说明存在一个负环。为什么是大于n呢?如果是大于n-1,那么任意的单节点的图会被判定为存在负环,综合考虑取>n。
AC代码(141ms):
 #include<iostream>
#include<cstdio>
#include<queue>
#include<string.h>
using namespace std;
const int maxn=;
int T,x,y,z,n,m,k,u,v,w,cnt[maxn],dis[maxn];vector<int> v1[maxn],v2[maxn];bool vis[maxn];queue<int> que;
bool spfa(int s){
while(!que.empty())que.pop();
memset(vis,false,sizeof(vis));
que.push(s),vis[s]=true,cnt[s]++,dis[s]=;//注意:自己到本身的时间为dis[s]=0,同时累计每个顶点的入队次数,用于判负环
while(!que.empty()){
u=que.front(),que.pop(),vis[u]=false;
for(size_t j=;j<v1[u].size();++j){
v=v1[u][j],w=v2[u][j];
if(dis[u]+w<dis[v]){//松弛
dis[v]=dis[u]+w;
if(!vis[v]){
que.push(v),vis[v]=true;
if(++cnt[v]>n)return true;//如果第n+1次仍然更新,则存在负圈
}
}
}
}
return false;
}
int main(){
while(~scanf("%d",&T)){
while(T--){
scanf("%d%d%d",&n,&m,&k);memset(cnt,,sizeof(cnt));
for(int i=;i<=n;++i)v1[i].clear(),v2[i].clear();
for(int i=;i<=n;++i)dis[i]=2e9;
while(m--){
scanf("%d%d%d",&x,&y,&z);//建双向边
v1[x].push_back(y),v1[y].push_back(x);
v2[x].push_back(z),v2[y].push_back(z);
}
while(k--){
scanf("%d%d%d",&x,&y,&z);//建单向边,权值为负数,表示时间倒流
v1[x].push_back(y);
v2[x].push_back(-z);
}
if(spfa())puts("YES");
else puts("NO");
}
}
return ;
}

解题报告:poj 3259 Wormholes(入门spfa判断负环)的更多相关文章

  1. poj 3259 Wormholes【spfa判断负环】

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36729   Accepted: 13444 Descr ...

  2. (简单) POJ 3259 Wormholes,SPFA判断负环。

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  3. Poj 3259 Wormholes(spfa判负环)

    Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...

  4. POJ 3259 Wormholes【bellman_ford判断负环——基础入门题】

    链接: http://poj.org/problem?id=3259 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  5. poj 3259 Wormholes(bellman-ford判断负环)

    题目链接:http://poj.org/problem?id=3259 题目就是问你能否回到原点而且时间还倒回去了.题目中有些路中有单向的虫洞能让时间回到过去 所以只要将虫洞这条边的权值赋为负然后再判 ...

  6. POJ 3259 Wormholes【Bellman_ford判断负环】

    题意:给出n个点,m条正权的边,w条负权的边,问是否存在负环 因为Bellman_ford最多松弛n-1次, 因为从起点1终点n最多经过n-2个点,即最多松弛n-1次,如果第n次松弛还能成功的话,则说 ...

  7. bzoj 1715: [Usaco2006 Dec]Wormholes 虫洞 -- spfa判断负环

    1715: [Usaco2006 Dec]Wormholes 虫洞 Time Limit: 5 Sec  Memory Limit: 64 MB 注意第一次加边是双向边第二次是单向边,并且每次询问前数 ...

  8. POJ 3259 Wormholes【最短路/SPFA判断负环模板】

    农夫约翰在探索他的许多农场,发现了一些惊人的虫洞.虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1..N,之间有M(1≤M≤2500)条路径 ...

  9. poj 2049(二分+spfa判负环)

    poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...

随机推荐

  1. 尝试使用UISearchDisplayController及对苹果对控件封装习惯的理解

    本文转载至 http://blog.sina.com.cn/s/blog_74e9d98d01019vji.html   在之前做过的应用中,很多都有“搜索”这个功能,大部分情况下我都是只采用UISe ...

  2. 2016/06/02 网摘记录 svn 服务器端 客户端 安装使用

    http://www.cnblogs.com/xiaobaihome/archive/2012/03/20/2408089.html http://www.cnblogs.com/xiaobaihom ...

  3. hdoj 1875 畅通project再续【最小生成树 kruskal &amp;&amp; prim】

    畅通project再续 Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其它的小岛时都要通过划小船来实现. ...

  4. window10 java 环境变量配置

    JAVA_HOME (可有可无) CLASSPATH  :   C:\Program Files\Java\jdk1.8.0_91\lib\dt.jar;C:\Program Files\Java\j ...

  5. HTTP服务器用什么组件或者方式比较好

    我目前用Indy的HttpServer组件来编写,但遇到一个暂时没有办法解决的问题,就是上传文件到这个HTTPServer,如果文件名包含中文,则会出现乱码.网上查了一下,这是个indy的遗留问题,据 ...

  6. vue中引入字体文件

    在用vue来写一官网的时候,想引入外部字体文件,毕竟总感觉他自己的字体有点难看,在这里记录下 1.先下载字体文件所需的.ttf文件 我这里想引入的是华文行楷字体 百度后下载了一个3M多的ttf文件 2 ...

  7. 数据结构之 图论---bfs(邻接表)

    数据结构实验之图论二:基于邻接表的广度优先搜索遍历 Time Limit: 1000MS Memory limit: 65536K 题目描述 给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索( ...

  8. MYSQL初级学习笔记六:子查询!(视频序号:初级_42 | 43)

    知识点八:子查询(42) 什么是子查询: 子查询是将一个查询语句嵌套在另一个查询语句中.内层查询语句的查询结果,可以作为外层查询语句提供条件. 引发子查询的情况: 使用[NOT] IN 的子查询 -- ...

  9. Top的VIRT是什么

    Top命令监控某个进程的资源占有情况  下面是各种内存: VIRT:virtual memory usage 1.进程“需要的”虚拟内存大小,包括进程使用的库.代码.数据等     2.假如进程申请1 ...

  10. MongoDB 用户名密码登录

    Mongodb enable authentication MongoDB 默认直接连接,无须身份验证,如果当前机器可以公网访问,且不注意Mongodb 端口(默认 27017)的开放状态,那么Mon ...