4758: [Usaco2017 Jan]Subsequence Reversal

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 76  Solved: 52
[Submit][Status][Discuss]

Description

Farmer John is arranging his NN cows in a line to take a photo (1≤N≤50). The height of the iith co
w in sequence is a(i), and Farmer John thinks it would make for an aesthetically pleasing photo if t
he cow lineup has a large increasing subsequence of cows by height.To recall, a subsequence is a sub
set a(i1),a(i2),…,a(ik)) of elements from the cow sequence, found at some series of indices i1<i2<
…<ik, We say the subsequence is increasing if a(i1)≤a(i2)≤…≤a(ik).FJ would like there to be a l
ong increasing subsequence within his ordering of the cows. In order to ensure this, he allows himse
lf initially to choose any subsequence and reverse its elements.
 
For example, if we had the list
 
1 6 2 3 4 3 5 3 4
We can reverse the chosen elements
 
1 6 2 3 4 3 5 3 4
  ^         ^ ^ ^
to get
 
1 4 2 3 4 3 3 5 6
  ^         ^ ^ ^
Observe how the subsequence being reversed ends up using the same indices as it initially occupied, 
leaving the other elements unchanged.Please find the maximum possible length of an increasing subseq
uence, given that you can choose to reverse an arbitrary subsequence once.
给定一个长度为N的序列,允许翻转一个子序列,求最长不下降子序列长度。n和数字都<=50
 

Input

The first line of input contains N. The remaining N lines contain a(1)…a(N),
each an integer in the range 1…50.
 

Output

Output the number of elements that can possibly form a longest increasing subsequence 
after reversing the contents of at most one subsequence.
 

Sample Input

9
1
2
3
9
5
6
8
7
4

Sample Output

9

HINT

 

Source

Platinum

/*
感觉这道题没完全懂
开始设状态毫无思路,只知道可能很多维......
想到可能是道区间dp,emm那就考虑一段区间[l,r]怎么维护里面交换那些数呢?
发现可以用值域这个东西把数给框住。又,反转区间肯定是越靠右的反转到越靠左位置。
那么由小区间推大区间时,只需要判断端点处包不包括在这一次的交换中即可。
所以可dp[i][j][L][R]为区间[i,j]里面min(ak) >= L, max(ak) <= R时,反转一次的最长不下降子序列。
转移见代码。
*/
#include<bits/stdc++.h> #define N 51 using namespace std;
int n,a[N],ans;
int dp[N][N][N][N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int main()
{
n=read();
for(int i=; i <= n; ++i) a[i]=read(),dp[i][i][a[i]][a[i]]=; for(int len=; len <= n; ++len) for(int i=; i+len- <= n; ++i)//当前区间
{
int j=i+len-;
for(int l=; l <= ; ++l) for(int L=; L+l- <= ; ++L)//当前值域
{
int R=L+l-;
ans=dp[i][j][L][R];
ans=max(ans,max(dp[i+][j][L][R],dp[i][j-][L][R]));
ans=max(ans,max(dp[i][j][L+][R],dp[i][j][L][R-]));
dp[i][j][L][R]=ans;
//copy小区间的答案
dp[i][j][min(L,a[i])][R]=max(dp[i][j][min(L,a[i])][R],dp[i+][j][L][R]+(a[i] <= L));
dp[i][j][L][max(R,a[j])]=max(dp[i][j][L][max(R,a[j])],dp[i][j-][L][R]+(a[j] >= R));
dp[i][j][min(L,a[i])][max(R,a[j])]=max(dp[i][j][min(L,a[i])][max(R,a[j])],dp[i+][j-][L][R]+(a[j] >= R)+(a[i] <= L));
//a[i]与a[j]不交换
dp[i][j][min(L,a[j])][R]=max(dp[i][j][min(L,a[j])][R],dp[i+][j-][L][R]+(a[j] <= L));
dp[i][j][L][max(R,a[i])]=max(dp[i][j][L][max(R,a[i])],dp[i+][j-][L][R]+(a[i] >= R));
dp[i][j][min(L,a[j])][max(R,a[i])]=max(dp[i][j][min(L,a[j])][max(R,a[i])],dp[i+][j-][L][R]+(a[i] >= R)+(a[j] <= L));
//a[i]与a[j]交换
}
}
cout<<dp[][n][][]<<endl;
return ;
}

bzoj4758: [Usaco2017 Jan]Subsequence Reversal(区间dp)的更多相关文章

  1. HDU Palindrome subsequence(区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/Oth ...

  2. [BZOJ4760][Usaco2017 Jan]Hoof, Paper, Scissors dp

    4760: [Usaco2017 Jan]Hoof, Paper, Scissors Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 136  Solv ...

  3. Palindrome subsequence(区间dp+容斥)

    In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting so ...

  4. HDU 4632 Palindrome subsequence (区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  5. HDU 4632 Palindrome subsequence(区间dp)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  6. 【HDU4632 Palindrome subsequence】区间dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 题意:给你一个序列,问你该序列中有多少个回文串子序列,可以不连续. 思路:dp[i][j]表示序 ...

  7. 区间dp提升复习

    区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...

  8. HDU4632:Palindrome subsequence(区间DP)

    Problem Description In mathematics, a subsequence is a sequence that can be derived from another seq ...

  9. BZOJ 1719--[Usaco2006 Jan] Roping the Field 麦田巨画(几何&区间dp)

    1719: [Usaco2006 Jan] Roping the Field 麦田巨画 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 82  Solved ...

随机推荐

  1. 2016 ACM-ICPC CHINA-Final

    补题进度:10/12 地址:http://codeforces.com/gym/101194 A(签到) 略 B(数位DP) 题意: 定义一个01字符串为good串当且仅当将其奇数位或者偶数位单独拎出 ...

  2. Java连接MySQL报错:CommunicationsException: Communications link failure

    现象: 报错:Exception in thread "main" com.mysql.cj.jdbc.exceptions.CommunicationsException: Co ...

  3. Spring Boot修改Thymeleaf版本(从Thymeleaf2.0到3.0)

    Spring Boot默认选择的Thymeleaf是2.0版本的,那么如果我们就想要使用3.0版本或者说指定版本呢,那么怎么操作呢?在这里要说明下 3.0的配置在spring boot 1.4.0+才 ...

  4. 转: ORACLE存储过程笔记2----运算符和表达式

    运算符和表达式     关系运算 =等于<>,!=不等于<小于>大于<=小于等于>=大于等于       一般运算   +加-减*乘/除:=赋值号=>关系号. ...

  5. 百度统计的JS脚本原理解析

    一句话:在你的网站上加载百度统计的脚本,这个脚本会收集你的本地信息,然后发送给百度统计网站 https://blog.csdn.net/iqzq123/article/details/8877645 ...

  6. 利用WiFi Pineapple Nano渗透客户端获取SHELL

    前言: 前两篇文章介绍了The WiFi Pineapple Nano设备的一些主要功能模块,例如PineAP.SSLsplit和Ettercap等.今天给大家实际场景演示下如何利用Pineapple ...

  7. 【python】搜索引擎方面的资料

    http://blog.csdn.net/hguisu/article/category/1230933

  8. CentOS 6.x Inotify+Rsync

    CentOS 6.x Inotify+Rsync yum -y install lrzsz [root@rsync ~]# mount -t nfs 10.6.100.75:/volume1/pace ...

  9. ln 软连接 & 硬连接

    创建软连接的方式 #ln -s soure /file object 创建软连接是连接文件本身,可以跨分区建立软连接,不会应为不同分区而出现不能使用的问题. 在创建软连接的文件中,修改一处文件另一处同 ...

  10. POJ 1436 Horizontally Visible Segments(线段树)

    POJ 1436 Horizontally Visible Segments 题目链接 线段树处理染色问题,把线段排序.从左往右扫描处理出每一个线段能看到的右边的线段,然后利用bitset维护枚举两个 ...