poj                         Relatives                               
Time Limit: 1000MS   Memory Limit: 65536K
            
                                                                            
                                                                             ->  题目连接 <-
     题目就不用占地方了,以后都用链接来吧;
     这道题就是一个欧拉函数的应用,学了欧拉函数应该没什么问题,但欧拉函数需要注意的是如果题目没有明确要求的话euler(1)的值一般是1;
     欧拉函数用来求解1-n-1中与n互质的数的数目,类似于素数问题,先将所要求的数m分解质因数为p1,p2,p3....,这些质因数两两不等,则euler(m)=m*(1-1/Pi),累加符号不会,将就看看;
     博主也是看了好久,虽然还没下定决心开始研究数论,不过学妹jian问了问这个问题,奈何没学过,就让人家去找学长了................
void fun(int x)
{
int ans=x,n=x;
for(int i=2;i*i<=n;i++)
if(n%i==0)
{
ans-=ans/i;就相当于a*(1-1/p);
while(n%i==0)
n/=i;
}
if(n>1) ans-=ans/n;
printf("%d\n",ans);
}//感觉这个函数效率还是蛮高的;
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
fun(n);
}
return 0;
}

nyoj                                        mdd的烦恼

时间限制:1000 ms  |  内存限制:65535 KB
难度:3


                                                                             ->  题目链接 
<-

          nyoj上的这道题和上面的简直一模一样,只不过题目所给的数据范围很大,用long long 可以表示,但是欧拉函数不会超时吗?当然不会,前面已经提到过这个效率特别高,65535的平方也即是表明程序只能跑到65535,多者超出范围,数据全用long long 表示,我们注意,这个n也是一直在减小的,所以更不用担心超时了,把上面的程序全部改成long
long 便可以了;
void fun(long long x)
{
long long ans=x,n=x;
for(long long i=2; i*i<=n; i++)
if(n%i==0)
{
ans-=ans/i;
while(n%i==0)
n/=i;
}
if(n>1) ans-=ans/n;
printf("%lld\n",ans);
}
int main()
{
long long n;
while(~scanf("%lld",&n)&&n)
{
fun(n);
}
return 0;
}//这里就不再赘述了;




   下面来介绍一下欧拉函数筛法打表,类似于素数打表,十分精简;
const int N=1000000+10;
int euler[N];
void Init( )
{
memset(euler,0,sizeof(euler));
euler[1]=1;//初始化1,请注意根据实际情况做出更改;
for(int i=2; i<N; i++)
if(!euler[i])
{
for(int j=i; j<N; j+=i)//类似于素数筛法打表;
{
if(!euler[j])
euler[j]=j;
euler[j]-=euler[j]/i;//关键;
}
}
}
int main()
{
int n;
Init();
while(~scanf("%d",&n)&&n)
{
printf("%d\n",euler[n]);
}
return 0;
}

  

POJ-20407Relatives/NYOJ-333mdd的烦恼,欧拉函数简单应用,模板A的更多相关文章

  1. poj 2154 Color(polya计数 + 欧拉函数优化)

    http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...

  2. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  3. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

  4. POJ 3090 Visible Lattice Points 【欧拉函数】

    <题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...

  5. nyoj 1007 GCD(数学题 欧拉函数的应用)

    GCD 描述 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b) ...

  6. 题解报告:poj 2480 Longge's problem(欧拉函数)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

  7. 【poj 2407】Relatives(数论--欧拉函数 模版题)

    题意就是求10^9以内的正整数的欧拉函数(Φ(n)表示<=n的与n互质的正整数个数). 解法:用欧拉筛和欧拉函数的一些性质:    1.若p是质数,Φ(p)=p-1:    2.欧拉函数是积性函 ...

  8. POJ_2478 Farey Sequence 【欧拉函数+简单递推】

    一.题目 The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbe ...

  9. poj 1284 Primitive Roots(原根+欧拉函数)

    http://poj.org/problem?id=1284 fr=aladdin">原根 题意:对于奇素数p,假设存在一个x(1<x<p),(x^i)%p两两不同(0&l ...

随机推荐

  1. 51nod 1138 连续整数的和

    1138 连续整数的和  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 给出一个正整数N,将N写为若干个连续数字和的形式(长度 >= 2). ...

  2. LoadRunner_11破解教程完整版

    2017.12.17更正 qtm的LR11,如果是win10版本的电脑而且ie浏览器是11以上的请到loadrunner官网下载社区免费版,支持google,firefox,edge,ie11四大浏览 ...

  3. Appium教程---Client/Server Architecture

    appium的核心其实是一个暴露了一系列REST API的server. 这个server的功能其实很简单:监听一个端口,然后接收由client发送来的command.翻译这些command,把这些c ...

  4. magento getMessage 不显示或者显示html标签解决方案

    在模板页面不显示getMessage的解决方案是,在对应的控制器里加上如下代码: $this->_initLayoutMessages('customer/session'); 如果加入后出现如 ...

  5. List与类之间的运用,即与javabean的应用

    package com.wh.Object; public class Goods { private String name; private double price; private int n ...

  6. AJPFX关于通过索引获取最大值的思路

    /*** 通过索引获取最大值***/public class Test1 {        public static void main(String[] args) {              ...

  7. 如何在tomcat部署项目(用ip访问)

    找了好长时间的错误,server.xml中一点错误也没有,但就是访问不到,最终发现就是服务器没有开放80端口的缘故. 服务器是Windows系统 1.控制面板=>系统和安全=>Window ...

  8. CentOS 7 下用 firewall-cmd / iptables 实现 NAT 转发供内网服务器联网

    自从用 HAProxy 对服务器做了负载均衡以后,感觉后端服务器真的没必要再配置并占用公网IP资源. 而且由于托管服务器的公网 IP 资源是固定的,想上 Keepalived 的话,需要挤出来 3 个 ...

  9. Spring && 实验IOC

    一.Spring作用 1.生态体系庞大,全能型选手![springmvc是其一个子模块,jdbcTemplate能直接操作数据库!]    2.将其他组件粘合在一起    3.IOC容器和AOP[As ...

  10. 堆排序原理及其js实现

    图文来源:https://www.cnblogs.com/chengxiao/p/6129630.html 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时 ...