差分约束系统专题 && 对差分约束系统的理解
具体能解决的问题:
求最长路,最短路,或者判断解是否存在。
在建边的时候:
一般是给你区间减法的关系,或者是这个点到另一个点的关系。如果给你的关系是除法的话,我们可以通过使用两边同时取log的方式,将除法变成两个式子的减法,这样就转换成了减法的建边。
判断最优解的时候:
一般是判断是否有负环或者正环,但是一个spfa只能判断一种,因为正环和负环的松弛条件是不同的,在判断是正环还是负环的时候,一般是判断某一个点的入队次数是不是大于总的点数,如果存在这种情况那肯定是存在正环或者负环的,如果是tle的话,可以考虑(仅供考虑)的一种优化的判断,判断某一个点的入队次数是不是大于sqrt(总的点数)。
对建边的初步理解:
1,如果是求最长路或者最短路的话,我们可以将所有的不等式都化成如下的式子,posA-posB<=d。
然后对于求最长路,就是在spfa的基础上改就可以了。将dis输出初始化成-inf,然后判断条件变成if(dis[ed]<dis[st]+edge[i],cost),这样的时候再去更新。
如果是求最短路的话,松弛条件改一下就可以了。
然后再就是建边的时候,有两种方法(超级源点的建立)。
第一种,如果是求前缀的话,对于posA-posB<=d,我们可以addedge(A,B,d)。这样话,就相当于从大的方向去链接小的方向,注意,如果只是按照题目条件去建边的话,整个图可能是不连通的,为了使图联通,我们可以建立一个超级源点,如果是从大的方向向小的方向建边的话,我们可以使超级源点是(总点数+1),然后这个超级源点再去连其他所有的点,边权为0,这样就不会影响到图,并且能够保证整个图是联通的。
第二种,如果是求后缀的话,我们就可以按照第一种的方法反着来就行了。
但是建边的额时候还是尽量少建点边,很可能会超时。
判断可行解:
对于区间的可行解的话,我们可以直接从右边界遍历到右边界,如果可以的话,判断两个相邻的点的dis(一般间隔是1)是不是变了没如果变了就说明当前这个点肯定有解。
差分约束系统专题 && 对差分约束系统的理解的更多相关文章
- 差分数组 and 树上差分
差分数组 定义 百度百科中的差分定义 //其实这完全和要讲的没关系 qwq 进去看了之后是不是觉得看不懂? 那我简单概括一下qwq 差分数组de定义:记录当前位置的数与上一位置的数的差值. 栗子 容易 ...
- 树上差分 (瞎bb) [树上差分][LCA]
做noip2015的运输计划写了好久好久写不出来 QwQ 于是先来瞎bb一下树上差分 混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...
- 【PHPsocket编程专题(理论篇)】初步理解TCP/IP、Http、Socket.md
前言 我们平时说的最多的socket是什么呢,实际上socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API).那TCP/IP又是什么呢?TCP/IP是ISO/OS ...
- Java并发专题(三)深入理解volatile关键字
前言 上一章节简单介绍了线程安全以及最基础的保证线程安全的方法,建议大家手敲代码去体会.这一章会提到volatile关键字,虽然看起来很简单,但是想彻底搞清楚需要具备JMM.CPU缓存模型的知识.不要 ...
- 字典树&&01字典树专题&&对字典树的理解
对于字典树和01字典树的一点理解: 首先,字典树建树的过程就是按照每个数的前缀来的,如果你要存储一个全小写字母字符串,那么这个树每一个节点最多26个节点,这样的话,如果要找特定的单词的话,按照建树的方 ...
- 专题:LFS构建逻辑理解
严格来说,LFS只能称为“pseudo LFS”,WHY? 因为LFS归根结底,还是基于已有的操作系统平台构建而来,并非真正的从0开始,它没有突破所谓“鸡与蛋”的死循环:但它确实有助于理解Linux的 ...
- 差分:IncDec Sequence 差分数组
突然就提到了这个东西,为了不再出现和去年联赛看见二分没学二分痛拿二等第一的情况,就去学了一下,基础还是比较简单的-- 先看一个经典例题: 给定一个长度为n的数列{a1,a2...an},每次可以选择一 ...
- 『Candies 差分约束系统』
差分约束系统 我们先来认识一下差分约束系统鸭! 差分约束系统是一种特殊的\(n\)元一次不等式组,它包含了\(n\)个变量\(x_1-x_n\)以及\(m\)个不等式(约束条件).其中每一个不等式形如 ...
- PCB走线分析——直角、差分、蛇形线
PCB直角走线的影响 布线(Layout)是PCB设计工程师最基本的工作技能之一.走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过 Layout 得以实现并验证,由此可见,布 ...
随机推荐
- web.config文件详解[转]
一).Web.Config是以XML文件规范存储,配置文件分为以下格式1.配置节处理程序声明特点: 位于配置文件的顶部,包含在<configSections>标志中.2.特定应用程序配置特 ...
- dividend = Integer.parseInt(args[0])参数问题
先来一段代码: package yichang; public class MyExceptionTest { public static void main(String[] args) { int ...
- BZOJ5308 ZJOI2018胖
贝尔福特曼(?)的方式相当于每次将所有与源点直接相连的点的影响区域向两边各扩展一格.显然每个点在过程中最多更新其他点一次且这些点构成一段连续区间.这个东西二分st表查一下就可以了.注意某一轮中两点都更 ...
- 如何认识TOS----DSCP 对照表
如何认识TOS----DSCP 对照表 最近有遇到项目中对FortiGate设置TOS的策略路由的问题,其实这问题较为简单,但是由于大家对TOS-DSCP概念不熟悉造成的,所以感觉比较难,现在不同厂商 ...
- Fortinet Security Fabric
Fortinet Security Fabric 这个世界从不固步自封.在技术方面,这意味着解决方案供应商必须保持不断创新和探索才能实现生存与发展. 在网络安全领域,这更是至理名言.许多黑客都是才华横 ...
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【BZOJ1079】【SCOI2008】着色方案
Time Limit: 10 Sec Memory Limit: 162 MB Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci ...
- 文件查找 locate 和 find
locate locate命令依赖于一个数据库文件,系统默认每天会检索一次系统中的所有文件,然后将检索到的文件记录到数据库中; 在执行查找时,可直接到数据库中查找记录,所以locate比find反馈更 ...
- java 操作命令行
目的:用java进行调用ab压测 window: cmd ab.exe linux: sh ab.sh 命令: abs -n 500 -c 10 https://www.baidu.com/ > ...
- bzoj : 4504: K个串 区间修改主席树
4504: K个串 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 268 Solved: 110[Submit][Status][Discuss] ...