HOJ1402 整数划分

http://acm.hit.edu.cn/hoj/problem/view?id=1402

【题目描述】

整数划分是一个经典的问题。希望这道题会对你的组合数学的解题能力有所帮助。

Input

每组输入是两个整数n和k。(1 <= n <= 50, 1 <= k <= n)

Output

对于每组输入,请输出六行。

第一行: 将n划分成若干正整数之和的划分数。
第二行: 将n划分成k个正整数之和的划分数。
第三行: 将n划分成最大数不超过k的划分数。
第四行: 将n划分成若干奇正整数之和的划分数。
第五行: 将n划分成若干不同整数之和的划分数。
第六行: 打印一个空行。

Sample Input

5 2

Sample Output

7
2
3
3
3

Hint:

  1. 将5划分成若干正整数之和的划分为: 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1
  2. 将5划分成2个正整数之和的划分为: 3+2, 4+1
  3. 将5划分成最大数不超过2的划分为: 1+1+1+1+1, 1+1+1+2, 1+2+2
  4. 将5划分成若干奇正整数之和的划分为: 5, 1+1+3, 1+1+1+1+1
  5. 将5划分成若干不同整数之和的划分为: 5, 1+4, 2+3

【算法分析】

  

本题相当于5个小问题,首先来看最容易做的第5个小问题:将n划分成若干不同整数之和的划分数。则是一个典型的背包装物品问题,把问题转化一下,即一个容量为n的背包,重量分别为1到n的物品各一个,求用若干物品将背包填满的方案总数。

利用动态规划的思想,很容易得到方程F[I,J] = F[I-1,J] +F[I-1,J-I],其中F[I,J]表示从前I个物品中用若干个组成的总重量为J的方案总数,转移时要保证F[I-1,J-I]有意义。答案为F[n,n],时间复杂度为O(n2)。

对于前3个小问题可以归结为一个问题,即第2个小问题:把将n划分成k个正整数之和的划分数。

为了避免重复,我们需要按照不下降的顺序进行排列。我们形象地可以把n的k份自然数划分看作n块积木堆成k列,那么不妨设这n块积木从左到右被堆成“阶梯状”。比如,下图表示的是3种10的4份自然数划分。

而将该图旋转90度,可以很容易想出一种状态表示方法。

设F[I,J,K]表示把J划分成I份最大为K的划分方案数,则有F[I,J,K] = ∑F[I-1,J-K,L],其中L = 1..K。时间复杂度为O(n2k2)。

而如果观察第一个图,我们还可以得到一种状态表示方式。设F[I,J]表示把I划分成J份的划分方案数,则有F[I,J] = ∑F[I-J,K] ,其中K = 0..J。时间复杂度为O(nk2)。

又由于F[I,J]=∑F[I-J,K](K = 0..J)=∑F[I-J,K](K = 0..J-1)+F[I-J,J] = F[I-1,J-1]+F[I-J,J],这样就把时间复杂度降为O(nk)。从另外一个角度想,我们在第一个图中“截去底边”,由于存在一个划分方案中含1的情况,我们无法确定在“截去底边”之后要把I-J分为几个数,那么不妨将划分方案中含1的情况单独列出来讨论,直接得到F[I,J] = F[I-1,J-1]+F[I-J,J]。

对于第1个小问题的答案是∑F[N,I](I = 1..N),第2个小问题的答案显然是F[N,K],而第3个小问题的答案则是∑F[N,I](I = 1..K),考虑上面旋转90度之后的图,你会发现,F[N,I]集合中的最高高度均为I,即将n划分成最大数为I的方案数。

最后来看第4个小问题,就是第2个小问题的分奇偶版本,那么设F[I,J]表示把I划分成J个奇数的划分方案数,G[I,J] 表示把I划分成J个偶数的划分方案数。那么还是用“截去底边”的思想,显然有G[I,J] = F[I-J,J]。但F[I,J]却不是直接等于G[I-J,J],因为这里又存在一个划分方案中含1的情况,同样将划分方案中含1的情况单独列出来讨论,则有F[I,J] = G[I-J,J] + F[I-1,J-1]。最后的答案就是∑F[N,I](I = 1..N),时间复杂度为O(n2)。

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int maxn = ; int n,k;
int f[maxn][maxn], g[maxn][maxn];
int f1[maxn][maxn], f2[maxn][maxn]; int main () {
int i, j;
int ans1, ans2, ans3, ans4, ans5;
f1[][] = ;
for (i = ; i < maxn; i ++)
for (j = ; j <= i; j ++)
f1[i][j]=f1[i-j][j]+f1[i-][j-];
f[][] = g[][] = ;
for (i = ; i < maxn; i ++)
for (j = ; j <= i; j ++){
g[i][j] = f[i - j][j];
f[i][j] = f[i - ][j - ] + g[i - j][j];
}
for (i = ; i < maxn; i ++)
f2[i][] = ;
for (i = ; i < maxn; i ++)
for (j = ; j < maxn; j ++){
f2[i][j] = f2[i - ][j];
if (j - i >= )
f2[i][j] += f2[i - ][j - i];
} while (scanf ("%d %d", &n, &k) != EOF){
ans1 = ans2 = ans3 = ans4 = ans5 = ;
for (i = ; i <= n; i ++)
ans1 += f1[n][i];
ans2 = f1[n][k];
for (i = ; i <= k; i ++)
ans3 += f1[n][i];
for (i = ; i <= n; i ++)
ans4 += f[n][i];
ans5 = f2[n][n];
printf ("%d\n%d\n%d\n%d\n%d\n\n", ans1, ans2, ans3, ans4, ans5);
}
return ;
}

HOJ 1402 整数划分的更多相关文章

  1. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  2. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  3. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  4. nyoj 90 整数划分

    点击打开链接 整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk,  其中n1≥n2≥-≥nk≥1,k≥ ...

  5. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

  6. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  7. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  8. NYOJ-571 整数划分(三)

    此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...

  9. BZOJ1263: [SCOI2006]整数划分

    1263: [SCOI2006]整数划分 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 332[Submit][Status] ...

随机推荐

  1. coursera课程Text Retrieval and Search Engines之Week 1 Overview

    Week 1 OverviewHelp Center Week 1 On this page: Instructional Activities Time Goals and Objectives K ...

  2. JDBC操作数据库的批处理

    在JDBC开发中,操作数据库需要与数据库建立连接,然后将要执行的SQL语句传送到数据库服务器,最后关闭数据库连接,都是按照这样一个流程进行操作的.如果按照该流程执行多条SQL语句,那么就需要建立多个数 ...

  3. Redhat Linux FTP配置

    文件传输协议(FTP:FileTransfer Protocol)使得主机间可以共享文件. FTP 使用 TCP 生成一个虚拟连接用于控制信息,然后再生成一个单独的 TCP 连接用于数据传输.控制连接 ...

  4. Javascript 中“靠”的使用

    Javascript中call的使用自己感觉蛮纠结的,根据文档很好理解,其实很难确定你是否真正的理解. call 方法应用于:Function 对象调用一个对象的一个方法,以另一个对象替换当前对象.c ...

  5. IOS之导航控制器

    UINavigationController是用于构建分层应用程序的主要工具,主要采用栈形式来实现视图.任何类型的视图控制器都可放入栈中.在设计导航控制器时需要指定根视图即用户看到的第一个视图.根视图 ...

  6. telnet 退出命令

    telnet xxx port ctrl + ] telnet > quit ctrl + w 是清除命令 转自: http://wangyifeng.blog.51cto.com/214490 ...

  7. [Javascript] Closure Cove, 1

    Returning a function from a function, complete with variables from an external scope, is called a cl ...

  8. ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)

    ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learn ...

  9. STL - 容器 - Array

    Array是C++ 11给STL新增加的容器 ArrayTest.cpp #include <array> #include <algorithm> #include < ...

  10. Socket 之 传值方式

    一.传送 DataTable 和 DataSet 1.发送端需序列化数据为二进制序列化格式 public static byte[] GetBinaryFormatDataSet(DataSet ds ...