[BZOJ3560]DZY Loves Math V(欧拉函数)
https://www.cnblogs.com/zwfymqz/p/9332753.html
由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来。再由欧拉函数公式和分配律发现就是等比数列求和问题,特判下1的问题就好了。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int mod=1e9+;
int n,x,cnt,tot,ans=,sm[],p[],b[];
struct P{ int x,y; }a[];
bool cmp(const P &a,const P &b){ return a.x<b.x || (a.x==b.x && a.y<b.y); } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void Fac(int x){
for (int i=; p[i]*p[i]<=x; i++)
if (x%p[i]==){
int s=;
while (x%p[i]==) x/=p[i],s++;
a[++cnt]=(P){p[i],s};
}
if (x>) a[++cnt]=(P){x,};
} void init(int n){
rep(i,,n){
if (!b[i]) p[++tot]=i;
for (int j=; j<=tot && i*p[j]<=n; j++){
b[i*p[j]]=;
if (i%p[j]==) break;
}
}
} int main(){
freopen("bzoj3560.in","r",stdin);
freopen("bzoj3560.out","w",stdout);
scanf("%d",&n); init();
rep(i,,n) scanf("%d",&x),Fac(x);
sort(a+,a+cnt+,cmp);
for (int i=,j; i<=cnt; i=j+){
for (j=i; j<cnt && a[j+].x==a[j].x; j++);
sm[]=; int tmp=;
rep(k,,a[j].y) sm[k]=1ll*sm[k-]*a[i].x%mod;
rep(k,,a[j].y) sm[k]=(sm[k-]+sm[k])%mod;
rep(k,i,j) tmp=1ll*tmp*sm[a[k].y]%mod;
tmp=1ll*(tmp-)*(a[i].x-)%mod*ksm(a[i].x,mod-)%mod+;
ans=1ll*ans*tmp%mod;
}
printf("%d\n",ans);
return ;
}
[BZOJ3560]DZY Loves Math V(欧拉函数)的更多相关文章
- 【bzoj3560】DZY Loves Math V 欧拉函数
题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...
- BZOJ3560 : DZY Loves Math V
因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可. 对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的 ...
- BZOJ3560 DZY Loves Math V(欧拉函数)
对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...
- BZOJ3560 DZY Loves Math V 数论 快速幂
原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...
- 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)
3560: DZY Loves Math V Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 241 Solved: 133 Description ...
- 【BZOJ3960】DZY Loves Math V(数论)
题目: BZOJ3560 分析: orz跳瓜. 欧拉函数的公式: \[\phi(n)=n(\prod \frac{p_i-1}{p_i})\] 其中 \(p_i\) 取遍 \(n\) 的所有质因子. ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法
给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...
- bzoj DZY Loves Math V
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 509 Solved: 284[Submit][Status][Discuss] Descriptio ...
随机推荐
- 【译】第十篇 SQL Server代理使用代理帐户
本篇文章是SQL Server代理系列的第十篇,详细内容请参考原文 在这一系列的上一篇,你查看了msdb库下用于授权访问SQL Server代理的安全角色.这些角色包括SQLAgentUserRole ...
- Java并发编程(4)--生产者与消费者模式介绍
一.前言 这种模式在生活是最常见的,那么它的场景是什么样的呢? 下面是我假象的,假设有一个仓库,仓库有一个生产者和一个消费者,消费者过来消费的时候会检测仓库中是否有库存,如果没有了则等待生产,如果有就 ...
- JavaScript事件冒泡与捕获
event.preventDefault(); 如果event.cancelable的值为true,可以取消默认事件 event.cancelable; 元素是否可以取消 ...
- mysql 在windons下的备份命令
1. @echo off set "Ymd=%date:~,4%%date:~5,2%%date:~8,2%" mysqldump -uroot -proot jy510 > ...
- OpenStack 监控解决方案
正如你们看到的那样,到目前为止(OpenStack Kilo),OpenStack自己的监控组件Telemetry并不是完美, 获取的监控数据以及制作出来的图表有时候让人匪夷所思,因其重点并不是监控而 ...
- yum命令安装软件时,出现--centos 7 安装apache 出现 Could not resolve host: mirrorlist.centos.org; 未知的错误"--CentOS网络设置 couldn't resolve host 'mirrorlist.centos.org问题解决
CentOS网络设置 couldn't resolve host 'mirrorlist.centos.org问题解决 今天在虚拟机上安装完CentOS6.5之后,首次使用时yum命令安装软件时,出现 ...
- 使用vs2015编辑c++模板程序报错2019
笔者这几天在熟悉vs2015工具编辑c++,(从前用的都是vc++6.0).发现还真是不容易使用,简单的一个小程序会报错一大堆你看不懂的问题.现将我发现的重要的一个问题呈现给大家. 在使用类模板设计对 ...
- CVE-2010-0248
[CNNVD]Microsoft Internet Explorer 多个远程代码执行漏洞(CNNVD-201001-237) Microsoft Internet Explorer 6, 6 SP1 ...
- Docker镜像和容器
本节内容: 安装Docker 卸载docker 镜像基本操作 容器基本操作 一.安装Docker Docker 对 Linux 内核版本的最低要求是3.10,如果内核版本低于 3.10 会缺少一些运行 ...
- CF GYM100548 (相邻格子颜色不同的方案数 2014西安现场赛F题 容斥原理)
n个格子排成一行,有m种颜色,问用恰好k种颜色进行染色,使得相邻格子颜色不同的方案数. integers n, m, k (1 ≤n, m ≤ 10^9, 1 ≤ k ≤ 10^6, k ≤ n, m ...