题意

You are given a string, s, and a list of words, words, that are all of the same length. Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters.

For example, given:

s: "barfoothefoobarman"

words: ["foo", "bar"]

You should return the indices: [0,9].

(order does not matter).

Subscribe to see which companies asked this question

大概来说,就是给定一串字符串和单词数组,找到字符串中,也就是子串必须全部包含单词数组中的单词,要求必须连续,顺序可以不要求,其中单词数组中的单词的个数是固定的,还有单词可以是重复的;

思路

其实最简单的思路就是对字符串进行逐次遍历,先找到第一个匹配的单词,这又要去往单词数组中去遍历,也就是其复杂时间为(字符串的长度*单词数组的单词的个数),虽然这种方法较为简单,但是其实花销是比较大的,同时需要注意的地方也是比较多的。所以在我参考一些代码之后,发现一些好的方法-包括双map,使用队列,使用trie树等等;

实现

我的实现(最简单容易理解)

vector<int> findSubstring1(string s, vector<string>& words) {
vector<int> result;
size_t word_len = words[0].length();
multimap<string, bool> maps;
for (size_t j = 0; j < words.size(); j++) {
maps.insert(make_pair(words[j], false));
}
for (size_t i = 0; i < s.length(); i++) {
for (size_t j = 0; j < words.size(); j++) {
for (auto beg = maps.lower_bound(words[j]), end = maps.upper_bound(words[j]); beg != end; ++beg) {
beg->second = false;
}
} //先找到第一个单词在子串中的位置
string subs = s.substr(i, word_len);
size_t first_pos = -1;
for (size_t j = 0; j < words.size(); j++) {
if (words[j] == subs) {
first_pos = i;
auto item = maps.find(words[j]);
item->second = true;
}
} //找第一个单词以后的所有单词,如果成功则返回开始的下标
if (first_pos != -1) {
size_t last_pos = first_pos + words.size() * word_len;
bool isValid = true;
size_t k = first_pos + word_len;
for (; k < last_pos; k+=word_len) {
if (k + word_len > s.length()) {
isValid = false;
break;
}
string osubs = s.substr(k, word_len);
auto item = maps.find(osubs);
auto itemcnt = maps.count(osubs); if (item != maps.end()) {
if (item->second == false) {
item->second = true;
}
else if (itemcnt > 1) {
bool ishave = false;
for (auto beg = ++item, end = maps.upper_bound(item->first); beg != end; ++beg) {
if (!beg->second) {
beg->second = true;
ishave = true;
break;
}
}
// 全部已经访问过了
if (!ishave) {
isValid = false;
}
}
else if (itemcnt == 1) {
isValid = false;
}
}
else {
isValid = false;
}
} // 坐标位置不正确,不成功
if (k != last_pos) {
isValid = false;
} //没有全部访问过,不成功
for (size_t q = 0; q < words.size(); q++) {
for (auto beg = maps.lower_bound(words[q]), end = maps.upper_bound(words[q]); beg != end; ++beg) {
if (!beg->second) {
isValid = false;
break;
}
}
} //成功则加入结果中
if(isValid) {
result.push_back((int)first_pos);
}
}
}
return result;
}

双map(最基础的优化)

/**
* 默认的简化的方法,利用unorder_map进行判断,维护一个left值
* 也就是全部单词字符串开始的地方
*
* @param s <#s description#>
* @param words <#words description#>
*
* @return <#return value description#>
*/
vector<int> findSubstring2(string s, vector<string>& words) {
vector<int> ans;
int n = s.size(), cnt = words.size();
if (n <= 0 || cnt <= 0) {
return ans;
} // 单词的hash数组,初始化
unordered_map<string, int> dict;
for (int i = 0; i < cnt; ++i) dict[words[i]]++; int wl = words[0].length();
for (int i = 0; i < wl; ++i) {
// left为起始单词串的下标
int left = i, count = 0;
unordered_map<string, int> tdict;
for (int j = i; j <= n - wl; j+=wl) {
string str = s.substr(j, wl);
// 计算单词数组中是否存在
if (dict.count(str)) {
tdict[str]++;
// 计算已访问的单词个数
if (tdict[str] <= dict[str]) {
count++;
}
else {
// 字符串中存在连续相同的单词,并且已经大于了单词数组中的个数,
// 这时需要向右进行移动
while (tdict[str] > dict[str]) {
string str1 = s.substr(left, wl);
tdict[str1]--;
if (tdict[str1] < dict[str1]) {
count--;
}
left += wl;
}
} //如果访问个数相同,则成功
if (count == cnt) {
ans.push_back(left);
tdict[s.substr(left, wl)]--;
count--;
left += wl;
}
}
else {
// 失败,重新统计
count = 0;
tdict.clear();
left += wl;
}
}
}
return ans;
}

使用队列

/**
* 这个方法比较复杂,比较难想懂,
* 利用每个单词对应一个队列,并且队列中存储每个单词出现的下标(初始情况均为-1)
* 根据下标去判断该单词的访问情况,或者第一次访问(-1),或者第n次访问(下标)等等
*/
typedef unordered_map<string, queue<int>> wordItr;
vector<int> findSubstring3(string s, vector<string>& words) {
vector<int> res;
if (words.size() == 0)
return res;
if (s.length() == 0)
return res;
int wordlen = words[0].size();
if (s.size() < wordlen) return res; wordItr wordHash;
wordItr::iterator it;
queue<int> q;
q.push(-1); // 对哈希表进行初始化,存在则往队列中添加-1
for (int i = 0; i < words.size(); i++) {
it = wordHash.find(words[i]);
if (it == wordHash.end()) {
wordHash[words[i]] = q;
}
else {
it->second.push(-1);
}
} wordItr temp = wordHash;
for (int i = 0; i < wordlen; i++) {
int curWordCnt = 0; //已经访问单词的个数
wordHash = temp;
for (int j = i; j <= s.size() - wordlen; j += wordlen) {
string str = s.substr(j, wordlen);
it = wordHash.find(str);
// 哈希数组里面是否存在字符串的key
if (it == wordHash.end()) {
curWordCnt = 0;
}
else {
// 访问队列
int lastPos = it->second.front();
// 如果为-1则表明第一次访问该单词
if (lastPos == -1) {
curWordCnt++;
}
// ??
else if (curWordCnt * wordlen < j - lastPos) {
curWordCnt++;
}
// 在访问完一次所有单词以后,重复出现该单词,该位置已经发生变化
else {
curWordCnt = (j - lastPos)/wordlen;
}
it->second.pop();
it->second.push(j); //该单词出现的下标 // 测试...
queue<int> tque = it->second;
while (!tque.empty()) {
cout << it->first << "->" << tque.front();
tque.pop();
} cout << endl; // 当前访问单词个数已经访问完
if (curWordCnt == words.size()) {
res.push_back((int)(j - wordlen * (words.size() - 1)));
}
}
}
}
return res;
}

Trie树

/**
* 这个方法可能更难想到,因为是用的trie树,
* 相较于前面的哈希,这里使用trie树进行适配
*
* @param s <#s description#>
* @param words <#words description#>
*
* @return <#return value description#>
*/
class TrieNode {
public:
TrieNode* child[26];
int cnt;
TrieNode(): cnt(0) {
memset(child, NULL, sizeof(TrieNode*) * 26);//分配空间
}
}; class Trie {
TrieNode* root;
public:
Trie() {
root = new TrieNode();
} TrieNode* getRoot() {
return root;
} void buildTrie(vector<string> words) {
for (string word : words) {
addWord(word);
}
} void addWord(string& word) {
TrieNode* cur = root;
for (int i = 0; i < word.size(); i++) {
char m = word[i] - 'a';
if (!cur->child[m]) {
cur->child[m] = new TrieNode();
}
cur = cur->child[m];
}
cur->cnt++;
}
}; Trie* trie;
/**
* 利用递归将字符串中的所有单词用trie树进行查找,找不到则表明不符合
* 我觉得除了递归以外,也可以通过两个遍历,最外层为遍历单词的个数,移动单词长度,
* 最内层循环为对每一个单词的进行Trie树的匹配;
*
* @param s <#s description#>
* @param start <#start description#>
* @param end <#end description#>
*
* @return <#return value description#>
*/
bool isSubString1(string& s, int start, int end) {
TrieNode* node = trie->getRoot();
int idx;
for (int i = start; i < end; i++) {
idx = s[i] - 'a';
if (!node->child[idx]) {
return false;
}
node = node->child[idx];
// 表明已经达到单词的末尾
if (node->cnt > 0) {
node->cnt--; //标记为已经使用
if (i + 1 == end || isSubString1(s, i+1, end)) {
node->cnt++; //标记为未使用
return true;
}
node->cnt++; //标记为未使用
}
}
return false;
} /**
* 这个方法比较巧妙,利用trie树去匹配字符串中的所有单词
*
* @param s <#s description#>
* @param words <#words description#>
*
* @return <#return value description#>
*/
vector<int> findSubstring4(string s, vector<string>& words) {
trie = new Trie();
trie->buildTrie(words);
int length = (int)words[0].size() * words.size(); vector<int> result;
for (int i = 0; i < s.length() - length; i++) {
if (isSubString1(s, i, i+length)) {
result.push_back(i);
}
}
return result;
}

总结

我觉得无论是什么方法,都逃不掉对字符串的遍历,对单词的匹配,就是看这个过程可以进行多大的优化。

Substring with Concatenation of All Words 题解的更多相关文章

  1. 【leetcode】Substring with Concatenation of All Words

    Substring with Concatenation of All Words You are given a string, S, and a list of words, L, that ar ...

  2. LeetCode - 30. Substring with Concatenation of All Words

    30. Substring with Concatenation of All Words Problem's Link --------------------------------------- ...

  3. leetcode面试准备: Substring with Concatenation of All Words

    leetcode面试准备: Substring with Concatenation of All Words 1 题目 You are given a string, s, and a list o ...

  4. [LeetCode] 30. Substring with Concatenation of All Words 解题思路 - Java

    You are given a string, s, and a list of words, words, that are all of the same length. Find all sta ...

  5. [Leetcode][Python]30: Substring with Concatenation of All Words

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 30: Substring with Concatenation of All ...

  6. leetcode-algorithms-30 Substring with Concatenation of All Words

    leetcode-algorithms-30 Substring with Concatenation of All Words You are given a string, s, and a li ...

  7. LeetCode: Substring with Concatenation of All Words 解题报告

    Substring with Concatenation of All Words You are given a string, S, and a list of words, L, that ar ...

  8. leetCode 30.Substring with Concatenation of All Words (words中全部子串相连) 解题思路和方法

    Substring with Concatenation of All Words You are given a string, s, and a list of words, words, tha ...

  9. LeetCode HashTable 30 Substring with Concatenation of All Words

    You are given a string, s, and a list of words, words, that are all of the same length. Find all sta ...

随机推荐

  1. Linux SSH Backdoor分析排查

    1.SSH后门分类 SSH后门方式有以下几种 软链接 SSH Server wrapper SSH Keylogger 2.软链接 利用方法 [root@helen]# ln -sf /usr/sbi ...

  2. Linux内核抢占实现机制分析【转】

    Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介 ...

  3. 3->集群架构主机克隆教程

    centos7系统集群主机克隆: 有道笔记链接地址

  4. MySQL 联合查询

    联合查询:将多次查询(多条select语句), 在记录上进行拼接(字段不会增加) 基本语法:多条select语句构成: 每一条select语句获取的字段数必须严格一致(但是字段类型无关) 语法 Sel ...

  5. mac上安装完成node,就升级好了npm,之后的设置

    1.打开终端输入: npm config list 找到npmrc globalconfig /usr/local/etc/npmrc 2.打开npmrc sudo vim /usr/local/et ...

  6. Windows 10安装MongoDB(安装&启动)

    Windows 10家庭中文版,MongoDB 3.6.3, 最近在学习Scrapy,可以却从未将scraped data存储到数据库中.在看过一些文档后,Scrapy会和MongoDB结合使用(还有 ...

  7. UFLDL 教程学习笔记(四)

    课程地址:http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/ 在之前的练习中,图片比较小, ...

  8. 在SQL中有时候我们需要查看现在正在SQL Server执行的命令

    在SQL中有时候我们需要查看现在正在SQL Server执行的命令.在分析管理器或者Microsoft SQL Server Management Studio中,我们可以在"管理-SQL  ...

  9. sqlserver中的全局变量总结

    @@CONNECTIONS返回自上次启动 Microsoft? SQL Server? 以来连接或试图连接的次数.@@CPU_BUSY返回自上次启动 Microsoft? SQL Server? 以来 ...

  10. MAC下安装MAMP后,mysql server无法启动

    用MAC下载安装了MAMP,之前使用是很好没问题的,但是突然无法启动mysql server,检查日志,提示InnDB出错,然后删掉了/Application/MAMP/db/mysql56目录下的i ...