Time Limit: 30 Sec  Memory Limit: 128 MB
Submit: 1171  Solved: 639
[Submit][Status][Discuss]

Description

小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰。

该部门有 n 个情报站,用 1 到 n 的整数编号。给出 m 对情报站 ui;vi 和费用 wi,表示情
报站 ui 和 vi 之间可以花费 wi 单位资源建立通道。
如果一个情报站经过若干个建立好的通道可以到达另外一个情报站,那么这两个情报站就
建立了通道连接。形式化地,若 ui 和 vi 建立了通道,那么它们建立了通道连接;若 ui 和 vi 均
与 ti 建立了通道连接,那么 ui 和 vi 也建立了通道连接。
现在在所有的情报站中,有 p 个重要情报站,其中每个情报站有一个特定的频道。小铭铭
面临的问题是,需要花费最少的资源,使得任意相同频道的情报站之间都建立通道连接。

Input

第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数

量。接下来 m 行,每行包含三个整数 ui;vi;wi,表示可以建立的通道。最后有 p 行,每行包含
两个整数 ci;di,表示重要情报站的频道和情报站的编号。

Output

输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。

Sample Input

5 8 4
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4

Sample Output

4

HINT

选择 (1; 5); (3; 5); (2; 5); (4; 5) 这 4 对情报站连接。

对于 100% 的数据,0 <ci <= p <= 10; 0 <ui;vi;di <= n <= 1000; 0 <= m <= 3000; 0 <= wi <=
20000。
 

Source

斯坦纳森林

设$f[i][sta]$表示$i$号节点,与关键节点的联通性为$sta$时的最小值

假设我们已经求出了$f$

那么我们令$g[sta]$表示,颜色联通性为$sta$时的最小值

$g$比较好求,枚举子集转移就可以

$f$的话,如果学过斯坦纳树也比较好求

按照套路,两种转移方法,一种是枚举子集,一种是SPFA

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int MAXN = 1e6 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') {x = x * + c - ''; c = getchar();}
return x * f;
}
int N, M, P;
struct node {
int u, v, w, nxt;
}E[MAXN];
int head[MAXN], num = ;
inline void AddEdge(int x, int y,int z) {
E[num].u = x; E[num].v = y; E[num].w = z;
E[num].nxt = head[x]; head[x] = num++;
}
struct Point {
int color, ID;
}a[MAXN];
int f[][], g[];
int vis[MAXN], sum[MAXN];
queue<int>q;
void SPFA(int now) {
while(q.size() != ) {
int p = q.front(); q.pop(); vis[p] = ;
for(int i = head[p]; i != -; i = E[i].nxt) {
int v = E[i].v;
if(f[v][now] > f[p][now] + E[i].w) {
f[v][now] = f[p][now] + E[i].w;
if(!vis[v]) vis[v] = , q.push(v);
}
}
}
}
int tmp[];
bool check(int sta) {
memset(tmp, , sizeof(tmp));
for(int i = ; i <= ; i++)
if(sta & ( << i - )) tmp[a[i].color]++;
for(int i = ; i <= ; i++)
if(tmp[i] && tmp[i] != sum[i]) return ;
return ;
}
int main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
memset(head, -, sizeof(head));
N = read(), M = read(), P = read();
for(int i = ; i <= M; i++) {
int x = read(), y = read(), z = read();
AddEdge(x, y, z);AddEdge(y, x, z);
}
memset(f, 0x3f, sizeof(f));
memset(g, 0x3f, sizeof(g));
for(int i = ; i <= P; i++)
a[i].color = read(), a[i].ID = read(), sum[a[i].color]++,f[a[i].ID][ << (i - )] = ;
int limit = ( << P) - ;
for(int sta = ; sta <= limit; sta++) {
for(int i = ; i <= N; i++) {
for(int S = sta; S; S = (S - ) & sta)
f[i][sta] = min(f[i][sta], f[i][S] + f[i][sta - S]);
q.push(i),vis[i] = ;
}
SPFA(sta);
}
for(int sta = ; sta <= limit; sta++)
for(int i = ; i <= N; i++)
g[sta] = min(g[sta], f[i][sta]);
for(int sta = ; sta <= limit; sta++)
if(check(sta))
for(int S = sta; S; S = (S - ) & sta)
if(check(S))
g[sta] = min(g[sta], g[S] + g[sta - S]);
printf("%d", g[( << P) - ]);
return ;
}

BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)的更多相关文章

  1. 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...

  2. bzoj 4006 管道连接 —— 斯坦纳树+状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 用斯坦纳树求出所有关键点的各种连通情况的代价,把这个作为状压(压的是集合选择情况)的初 ...

  3. BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)

    4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...

  4. bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...

  5. BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)

    题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/probl ...

  6. 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树

    [BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...

  7. 洛谷P3264 [JLOI2015]管道连接 (斯坦纳树)

    题目链接 题目大意:有一张无向图,每条边有一定的花费,给出一些点集,让你从中选出一些边,用最小的花费将每个点集内的点相互连通,可以使用点集之外的点(如果需要的话). 算是斯坦纳树的入门题吧. 什么是斯 ...

  8. bzoj1402 Ticket to Ride 斯坦纳树 + 状压dp

    给定\(n\)个点,\(m\)条边的带权无向图 选出一些边,使得\(4\)对点之间可达,询问权值最小为多少 \(n \leqslant 30, m \leqslant 1000\) 首先看数据范围,\ ...

  9. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

随机推荐

  1. elixir 模块

    模块定义  defmodule 函数定义  def 私有函数  defp  --相当于其他语言 private iex(29)> defmodule Math do...(29)> def ...

  2. Spring Boot—12URL映射

    package com.sample.smartmap.controller; import java.util.List; import org.springframework.beans.fact ...

  3. reentrantlock用于替代synchronized

    1.①使用reentrantlock可以完成同样的功能   ②需要注意的是,必须要必须要必须要手动释放锁(重要的事情说三遍)   ③使用syn锁定的话如果遇到异常,jvm会自动释放锁,但是lock必须 ...

  4. windows 程序员电脑设置

    程序员电脑设置: 1.详细目录 a.在一个文件夹下设为详细信息 b.win7点击"组织"-->"文件夹的搜索选项"-->"查看" ...

  5. Eigen学习之Array类

    Eigen 不仅提供了Matrix和Vector结构,还提供了Array结构.区别如下,Matrix和Vector就是线性代数中定义的矩阵和向量,所有的数学运算都和数学上一致.但是存在一个问题是数学上 ...

  6. 分享:Windows2008重启后提示系统恢复选项的解决办法

    如题:WINdows2008服务器. 重启后提示系统恢复选项的解决办法 使用windows 2008后,不能启动的问题,重启后出现 修复系统选项 采用下面帖子中的部分命令搞定之. 我自己是直接使用:选 ...

  7. aws rhel 7 安装GUI ,配置VNC

    预计阅读时间:15分钟 预计配置时间:30分钟  (前提是已经申请AWS的EC2的rhel7 云主机并且成功运行) 目前AWS 亚马逊云免费试用一年,申请一个学习使用 痛点:没有GUI,无法搭建Jen ...

  8. [翻译] AYVibrantButton

    AYVibrantButton https://github.com/a1anyip/AYVibrantButton AYVibrantButton is a stylish button with ...

  9. 《C++ Primer Plus》读书笔记之九—使用类

    第十一章 使用类 1.操作符函数的格式:operator op(argument-list).op是将要重载的操作符. 2.操作符重载函数的两种调用方式:①函数表示法:C=A.operator+(B) ...

  10. 企业生产环境集群稳定性-HA就行吗?

    在企业生产中,集群一旦运行,是要尽可能的将损失降到最低,现在所有的大数据技术都有HA,spark的.Hadoop的.HBase的等等, HA分冷备和热备,热备是集群自带的,冷备就是硬件的. 这样一种情 ...