1、What does the analogy “AI is the new electricity” refer to?  (B)

A. Through the “smart grid”, AI is delivering a new wave of electricity.

B. Similar to electricity starting about 100 years ago, AI is transforming multiple industries.

C. AI is powering personal devices in our homes and offices, similar to electricity.

D. AI runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.

2、Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)  (A、B、D)

A. We have access to a lot more data.

B. We have access to a lot more computational power.

C. Neural Networks are a brand new field.

D. Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.

 
3、Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.) (A、B、D)

A. Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.

B. Faster computation can help speed up how long a team takes to iterate to a good idea.

C. It is faster to train on a big dataset than a small dataset.

D. Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

4、When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False?  (B)

A. True

B. False

5、Which one of these plots represents a ReLU activation function? (C)

A. Figure 1:

B. Figure 2:

C. Figure 3:

D.Figure4

6.Images for cat recognition is an example of “structured” data, because it is represented as a structured array in a computer. True/False? (B)

A. True

B. False

7.A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of “unstructured” data because it contains data coming from different sources. True/False?(B)

A. True

B. False

8.Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.) (A、C)

A. It can be trained as a supervised learning problem.

B. It is strictly more powerful than a Convolutional Neural Network (CNN).

C. It is applicable when the input/output is a sequence (e.g., a sequence of words).

D. RNNs represent the recurrent process of Idea->Code->Experiment->Idea->....

9.In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent? (A)

A.

x-axis is the amount of data
y-axis (vertical axis) is the performance of the algorithm.

B.

x-axis is the performance of the algorithm
y-axis (vertical axis) is the amount of data.

C.

x-axis is the amount of data
y-axis is the size of the model you train.

D.

x-axis is the input to the algorithm
y-axis is outputs.

10.Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.) (A、C)

A. Increasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help significantly.

B. Decreasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help significantly.

C. Increasing the training set size generally does not hurt an algorithm’s performance, and it may help significantly.

D. Decreasing the training set size generally does not hurt an algorithm’s performance, and it may help significantly.

----------------------------------------中文翻译----------------------------------------------

1、"AI 是新电" 的比喻是指什么?(B)
A、通过 "智能电网", AI 正在提供一个新的电力浪潮。
B、类似于100年前开始的电力, AI 正在转变多个产业。
C、AI 正在我们的家庭和办公室为个人设备供电, 类似于电力。
D、AI 运行在计算机上, 因此是由电力驱动的, 但它是让计算机做的事情之前不可能。
 
2、哪些是最近才开始学习的原因?(请检查适用的三选项)(A、B、D)

A、我们可以获得更多的数据。
B、我们可以获得更多的计算能力。
C、神经网络是一个崭新的领域。
D、深入的学习已导致重要的应用, 如在线广告, 语音识别和图像识别的重大改进。
 
3、回想一下关于不同 ML 思想的迭代图。下面哪个陈述是真的?(检查所有适用的) (A、B、D)

A、能够快速地试用想法,可以让深学习的工程师更快地进行迭代。
B、更快的计算,可以帮助加快团队迭代到一个好的想法的时间。
C、在大数据集上训练比小数据集更快。
D、在深入学习算法的最新进展使我们能够更快地训练好的模型 (即使不改变 CPU/GPU 硬件)。
 
4、当一个经验丰富的深学习工程师在一个新的问题上工作时, 他们通常可以利用以前的问题的洞察力, 在第一次尝试中训练一个好的模型, 而不需要通过不同的模型多次迭代。真/假? (B)

A、真
B、假
 
5、这些图形中的哪一个代表一个 ReLU 激活函数? (C)

A. Figure 1:

B. Figure 2:

C. Figure 3:

D.Figure4

6、用于 cat 识别的图像是 "结构化" 数据的一个示例, 因为它在计算机中表示为结构化数组。真/假?(B)
A、真 
B、假
 

7、一个人口统计数据集在不同城市的人口, 人均 GDP, 经济增长是一个 "非结构化" 数据的例子, 因为它包含来自不同来源的数据。真/假? (B)

A、真

B、假

8、为什么 RNN (递归神经网络) 用于机器翻译, 说将英语翻译成法语?(检查所有适用的)(A、C)

A、它可以被训练作为一个被监督的学习问题。

B、它是严格比卷积神经网络 (CNN) 更强大。

C、当输入/输出是一个序列 (例如, 一个单词序列) 时, 它是适用的。

D、RNNs 代表了思想的反复过程->> 代码->> 实验->> 想法...。

9、

在我们在讲座中手绘的图表中, 水平轴 (x 轴) 和垂直轴 (y-axis) 代表什么?(A)

A、

x 轴是数据量
y-axis (纵轴) 是该算法的性能。

B、

x 轴是算法的性能
y-axis (垂直轴) 是数据量。

C、

x 轴是数据量
y-axis 是你训练的模型的大小。

D、

x 轴是算法的输入
y-axis 是输出。
 
10、假设前一个问题的图中描述的趋势是准确的 (并希望你得到了坐标轴标签), 下面哪一个是正确的?(检查所有适用的)(A、C)

A、增加神经网络的大小通常不会损害算法的性能, 而且可能有很大的帮助。
B、减小神经网络的大小通常不会影响算法的性能, 而且可能会有明显的帮助。
C、增加训练集的大小通常不会影响算法的性能, 而且可能有很大的帮助。
D、降低训练集的大小通常不会影响算法的性能, 而且可能会有明显的帮助。
 
----------------------------------------------------------------------------------------------------------------------
以上答案仅供参考

课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题的更多相关文章

  1. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  3. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  4. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)—— 1.Practice Questions: Key concepts on Deep Neural Networks

    [解释] [解释] 比如算法中的learing rateα(学习率).iterations(梯度下降法循环的数量).L(隐藏层数目).n[l] (隐藏层单元数目).choice of activati ...

  5. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)

    --------------------------------------------------中文翻译---------------------------------------------- ...

  6. 吴恩达 Deep learning 第一周 深度学习概论

    知识点 1. Relu(Rectified Liner Uints 整流线性单元)激活函数:max(0,z) 神经网络中常用ReLU激活函数,与机器学习课程里面提到的sigmoid激活函数相比有以下优 ...

  7. 吴恩达Machine Learning 第一周课堂笔记

    1.Introduction 1.1 Example        - Database mining        Large datasets from growth of automation/ ...

  8. Java课程课后作业之19学期之第一周博客作业

    作为一个大二的学生,自己已经不小了,没有大一那个时候的无忧无虑的可以放纵的时光,只剩下一年,我就该做出我人生的下一个重大决定了,这一次真的是我一个人的决定,从小到大,父母为我做过很多的决定,即使在小的 ...

  9. 第一周 Introduction

    欢迎 欢迎来到这门关于机器学习的免费网络课程,机器学习是近年来最激动人心的技术之一,在这门课中,你不仅可以了解机器学习的原理,更有机会进行实践操作,并且亲自运用所学的算法. 每天你都可能在不知不觉中使 ...

随机推荐

  1. hdu - 1072(dfs剪枝或bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1072 思路:深搜每一个节点,并且进行剪枝,记录每一步上一次的s1,s2:如果之前走过的时间小于这一次, ...

  2. js 获取时间不能大于当前系统时间

    var dataDate=$.trim($("#dataDate").val()); if(dataDate.length==0){ $("#dataDateTip&qu ...

  3. UVa 11464 Even Parity (二进制法枚举)

    题意:给你一个n*n的01矩阵,让你把最少的0变成1,使得每个元素的上,下,左,右的元素(如果有的话)之和均为偶数. 析:最好想的的办法就是暴力,就是枚举每个数字是变还是不变,但是...时间复杂度也太 ...

  4. php PDO mysql

    php PDO写法连接mysql: $db=new PDO("mysql:host=localhost;dbname=sql","root","roo ...

  5. Vue 需要使用jsonp解决跨域时,可以使用(vue-jsonp)

    1,执行命令 npm install vue-jsonp --save 2.src/main.js中添加: import VueJsonp from 'vue-jsonp' Vue.use(VueJs ...

  6. 重大发现 springmvc Controller 高级接收参数用法

    1.  数组接收 @RequestMapping(value="deleteRole.json") @ResponseBody public Object deleteRole(S ...

  7. MySQL性能调优与架构设计——第 18 章 高可用设计之 MySQL 监控

    第 18 章 高可用设计之 MySQL 监控 前言: 一个经过高可用可扩展设计的 MySQL 数据库集群,如果没有一个足够精细足够强大的监控系统,同样可能会让之前在高可用设计方面所做的努力功亏一篑.一 ...

  8. mongodb 问题

    启动mongodb时,提示Unclean shutdown detected mongodb,解决方法很简单 mongod --repair --dbpath D:\MongoDB\blog   不用 ...

  9. LINUX中关于SIGNAL的定义

    /* Signals. */ #define SIGHUP 1 /* Hangup (POSIX). */ #define SIGINT 2 /* Interrupt (ANSI). */ #defi ...

  10. ABP 基础设施层——集成 Entity Framework

    本文翻译自ABP的官方教程<EntityFramework Integration>,地址为:http://aspnetboilerplate.com/Pages/Documents/En ...