Here is the note for lecture five.



There will be several points 



1. Training and Testing 

Both of these are about data. Training is using the data to get a fine hypothesis, and testing is not.

If we get a final hypothesis and want to test it, it turns to testing.



2. Another way to verify that learning is feasible. Firstly, let me show you an inequlity.

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" style="text-align:center">

As it mentions on note 2, in the inequlity, the complexity of your hypothesis can be reflected by M. 

However, M is almost meaningless, and because of this, your hypothesis will be useless.
If we can replace 

M with another quantity, and the quantity is not meaningless, that means not infinite, and then we can start

our learning in an actual model.(our learning is feasible)

What is M? It mentioned before that M is the maxnum of hypothesis. So can we figure number of hypothesis to 

replace M? The answer turns true.

the maxnum of hypothesis are different choice of different points. If the number of uncertain is a, and the number

of choice for uncertain is b, then the maxnum of hypothesis come out, its a^b.

But it seems not smoothly like that, there are several hypothesis could not be built up,
generlly the number of hypothesis 

that can be built are less than a^b.

Let's come back to the inequlity, we can prove it mathematically that
if M can be replaced by a polynomial, that means the number of hypothesis in a set is not infinite, then we can declare that learning is feasible using this hypothesis set. There is a new statement that wil be proved next lecture, if the maxnum of hypothesis
is less than its max-value, the number of hypothesis could be replaced by a polynimial, that is, learning is feasible using the hypothesis set.

According to above statement, if there are several hypothesis can not be built up, then set for the hypothesis will be feasible for learning.

Note for video Machine Learning and Data Mining——training vs Testing的更多相关文章

  1. Note for video Machine Learning and Data Mining——Linear Model

    Here is the note for lecture three. the linear model Linear model is a basic and important model in ...

  2. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  3. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  4. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  5. Machine Learning and Data Science 教授大师

    http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...

  6. Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐

    核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...

  7. 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)

    怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...

  8. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  9. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

随机推荐

  1. isPostback 的原理及作用(很easy)

    1.IsPostBack用来推断表单是否是回发. (不是第一次请求),是点击表单的提交button回发过来的.是否是回发与get请求还是Post请求无关.可是普通情况下回发都是Post请求. 一般Ge ...

  2. 【python】理想论坛帖子爬虫1.06

    昨天认识到在本期同时起一百个回调/线程后程序会崩溃,造成结果不可信. 于是决定用Python单线程操作,因为它理论上就用主线程跑不会有问题,只是时间长点. 写好程序后,测试了一中午,210个主贴,11 ...

  3. (算法)位图BitMap

    题目: 给定一数组,大小为M,数组中的数字范围为1-N,如果某带宽有限,无法传输该大小的数组,该怎么办? 思路: 通过位图BitMap来压缩数组,将数组中每个数字在bit位上标志,这样就可以将数组大小 ...

  4. 使用Draw rect 绘制圆角矩形

    - (void)drawRect:(CGRect)rect { CGContextRef context = UIGraphicsGetCurrentContext(); UIGraphicsPush ...

  5. UIKeyboardTypeNumberPad 数字键盘添加完成按钮

    一:添加通知 //数字键盘添加完成 [[NSNotificationCenterdefaultCenter] addObserver:selfselector:@selector(keyboardWi ...

  6. 详解 Spring 3.0 基于 Annotation 的依赖注入实现

    Spring 的依赖配置方式与 Spring 框架的内核自身是松耦合设计的.然而,直到 Spring 3.0 以前,使用 XML 进行依赖配置几乎是唯一的选择.Spring 3.0 的出现改变了这一状 ...

  7. 你的灯亮着吗pdf –读书笔记

      十句话概括这本书   1.确认问题比找到方法更重要 2.解决问题其实解决的是"人的期待" 3.你在解决问题中可能会发现新的机会 4.要了解问题的可变性和复杂性 5.站在用户而不 ...

  8. PHP $_GET

    $_GET 变量用于收集来自 method="get" 的表单中的值. $_GET 变量 $_GET 变量是一个数组,内容是由 HTTP GET 方法发送的变量名称和值. $_GE ...

  9. spring注解配置quartz

    常规配置quartz可以参考我的另外一篇博文:http://www.cnblogs.com/yangzhilong/p/3349116.html spring配置文件里增加: 命令空间: http:/ ...

  10. assert语句(assert用来判断语句的真假)

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #Python学习手册 868 #assert语句(assert用来判断语句的真假) #案例 mylist=[ ...