Here is the note for lecture five.



There will be several points 



1. Training and Testing 

Both of these are about data. Training is using the data to get a fine hypothesis, and testing is not.

If we get a final hypothesis and want to test it, it turns to testing.



2. Another way to verify that learning is feasible. Firstly, let me show you an inequlity.

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" style="text-align:center">

As it mentions on note 2, in the inequlity, the complexity of your hypothesis can be reflected by M. 

However, M is almost meaningless, and because of this, your hypothesis will be useless.
If we can replace 

M with another quantity, and the quantity is not meaningless, that means not infinite, and then we can start

our learning in an actual model.(our learning is feasible)

What is M? It mentioned before that M is the maxnum of hypothesis. So can we figure number of hypothesis to 

replace M? The answer turns true.

the maxnum of hypothesis are different choice of different points. If the number of uncertain is a, and the number

of choice for uncertain is b, then the maxnum of hypothesis come out, its a^b.

But it seems not smoothly like that, there are several hypothesis could not be built up,
generlly the number of hypothesis 

that can be built are less than a^b.

Let's come back to the inequlity, we can prove it mathematically that
if M can be replaced by a polynomial, that means the number of hypothesis in a set is not infinite, then we can declare that learning is feasible using this hypothesis set. There is a new statement that wil be proved next lecture, if the maxnum of hypothesis
is less than its max-value, the number of hypothesis could be replaced by a polynimial, that is, learning is feasible using the hypothesis set.

According to above statement, if there are several hypothesis can not be built up, then set for the hypothesis will be feasible for learning.

Note for video Machine Learning and Data Mining——training vs Testing的更多相关文章

  1. Note for video Machine Learning and Data Mining——Linear Model

    Here is the note for lecture three. the linear model Linear model is a basic and important model in ...

  2. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  3. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  4. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  5. Machine Learning and Data Science 教授大师

    http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...

  6. Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐

    核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...

  7. 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)

    怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...

  8. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  9. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

随机推荐

  1. DIV焦点事件详解 --【focus和tabIndex】​

    添加 tabindex='-1' 属性: 默认:获取不到焦点事件(blur) 1 <div class="wl-product" id="wl-product&qu ...

  2. android 中的 window,view,activity具体关系

    通过讨论这个问题,我们能够见识到google是对面向对象模式的理解,能够理解android底层的一些调用.这也是一道很常见的面试题. 我们这篇文章就来解决这四个问题: Android  中view的显 ...

  3. Linux下删除相互依赖的包

    今天遇到一个问题,使用RPM 卸载包的时候两个包相互依赖 包A 和包B 卸载A的时候提示需要先卸载B ,反之亦然 经过一番百度 可以在命令后面加参数--nodeps 例如 rpm -e php-jso ...

  4. Android -- 触摸Area对焦区域(更新)

    老早就想找关于不同点击不同地方的对焦,但是一直没有找到,现在项目又需要这个功能,又跑出来找找,最后还是找到啦~~关于对焦更多的是关于自动对焦. 废话不多说,直接来干货,主要是setFocusAreas ...

  5. Tomcat gzip果然强大,js文件压缩率50%以上

    Tomcat配置使用gzip,在server.xml中 <Connector port="9098" protocol="HTTP/1.1" connec ...

  6. [NPM] Use npx to run commands with different Node.js versions

    We will use npx to run a package using different versions of Node.js. This can become valuable when ...

  7. 内有干货!2个人3个月怎样从零完毕一款社区App《林卡》

    嘿,大家好.我是不灭的小灯灯,我赌5毛你没听说过我的名字... 好啦.这篇不是鸡汤,是经验吐槽.干货分享! 所以乱七八糟的就不多说了.直接切入正题. 先说下自己的情况背景,眼下尚未毕业.非计算机专业, ...

  8. redis 安装 命令

    安装: http://redis.io/download 在线操作命令:http://try.redis.io/ 命令查询:https://redis.readthedocs.org/en/lates ...

  9. HDU1588-Gauss Fibonacci(矩阵高速幂+等比数列二分求和)

    题目链接 题意:g(x) = k * x + b.f(x) 为Fibonacci数列.求f(g(x)),从x = 1到n的数字之和sum.并对m取模. 思路:  设A = |(1, 1),(1, 0) ...

  10. [C++设计模式]template 模板方法模式

    模板法模式:定义一个操作中的算法骨架.而将一些步骤延迟到子类中. 依照<headfirst 设计模式>的样例.煮茶和煮咖啡的算法框架(流程)是一样的.仅仅是有些算法的实现是不一样的,有些是 ...