【刷题】BZOJ 2243 [SDOI2011]染色
Description
给定一棵有n个节点的无根树和m个操作,操作有2类:
1、将节点a到节点b路径上所有点都染成颜色c;
2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),
如“112221”由3段组成:“11”、“222”和“1”。
请你写一个程序依次完成这m个操作。
Input
第一行包含2个整数n和m,分别表示节点数和操作数;
第二行包含n个正整数表示n个节点的初始颜色
下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。
Output
对于每个询问操作,输出一行答案。
Sample Input
6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
3
1
2
HINT
数N<=105,操作数M<=105,所有的颜色C为整数且在[0, 10^9]之间。
Solution
这题有很多做法,树剖,LCT
因为现在正在练LCT,所以就用LCT写了
一条链上,维护四个东西,col(结点本身颜色),lco(结点包括其Splay子树代表的一段颜色的最左边颜色),rco(这个就是最右边的),sum(结点包括其Splay子树代表的一段的答案)
因为LCT的Splay保证了中序遍历按深度递增,所以一个结点包括其子树后包含的位置一定是连续的一段,所以可以这样维护
然后对于pushup
首先直接把两个儿子的sum与自己的长度1全部加上后
再判断连接的地方是否相同,如果相同就减去多加的(这个地方可能说不清楚,但一看代码就明白了)
然后当前结点的lco就是左儿子的lco,rco就是右儿子的rco
还要注意如果没有左右儿子,就千万不要转移,否则会出问题,lco和rco会转移错误
#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=100000+10;
int n,m;
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN],rev[MAXN],sum[MAXN],lco[MAXN],rco[MAXN],pnt[MAXN],stack[MAXN],cnt,col[MAXN];
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
std::swap(lco[x],rco[x]);
rev[x]^=1;
}
inline void paint(int x,int c)
{
sum[x]=1;
pnt[x]=col[x]=lco[x]=rco[x]=c;
}
inline void pushup(int x)
{
sum[x]=sum[lc(x)]+sum[rc(x)]+1;
if(lc(x)&&rc(x))sum[x]=sum[x]-(rco[lc(x)]==col[x])-(col[x]==lco[rc(x)]);
else if(lc(x))sum[x]=sum[x]-(rco[lc(x)]==col[x]);
else if(rc(x))sum[x]=sum[x]-(col[x]==lco[rc(x)]);
lco[x]=rco[x]=col[x];
if(lc(x))lco[x]=lco[lc(x)];
if(rc(x))rco[x]=rco[rc(x)];
}
inline void pushdown(int x)
{
if(pnt[x])
{
if(lc(x))paint(lc(x),pnt[x]);
if(rc(x))paint(rc(x),pnt[x]);
pnt[x]=0;
}
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
};
LCT T;
#undef lc
#undef rc
inline void read(int &x)
{
int data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=(data<<3)+(data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
inline void write(int x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)
{
int color;
read(color);
T.col[i]=T.lco[i]=T.rco[i]=color;
T.sum[i]=1;
}
for(register int i=1;i<n;++i)
{
int u,v;
read(u);read(v);
T.link(u,v);
}
while(m--)
{
char opt[2];
scanf("%s",opt);
if(opt[0]=='C')
{
int a,b,c;
read(a);read(b);read(c);
T.split(a,b);T.paint(b,c);
}
if(opt[0]=='Q')
{
int a,b;
read(a);read(b);
T.split(a,b);
write(T.sum[b],'\n');
}
}
return 0;
}
【刷题】BZOJ 2243 [SDOI2011]染色的更多相关文章
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
- bzoj 2243 [SDOI2011]染色(树链剖分,线段树)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4637 Solved: 1726[Submit][Status ...
- Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5020 Solved: 1872[Submit][Status ...
- bzoj 2243: [SDOI2011]染色 线段树区间合并+树链剖分
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 7925 Solved: 2975[Submit][Status ...
- bzoj 2243: [SDOI2011]染色 (树链剖分+线段树 区间合并)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9854 Solved: 3725[Submit][Status ...
- BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 2243: [SDOI2011]染色 树链剖分+线段树区间合并
2243: [SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数 ...
- bzoj 2243 [SDOI2011]染色(树链剖分+线段树合并)
[bzoj2243][SDOI2011]染色 2017年10月20日 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询 ...
- 洛谷 P2486 [SDOI2011]染色/bzoj 2243: [SDOI2011]染色 解题报告
[SDOI2011]染色 题目描述 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同 ...
- BZOJ 2243 [SDOI2011]染色 (树链剖分)(线段树区间修改)
[SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6870 Solved: 2546[Submit][Status][Disc ...
随机推荐
- docker-compose 部署 EFK
信息: Docker版本($ docker --version):Docker版本18.06.1-ce,版本e68fc7a 系统信息($ cat /etc/centos-release):CentOS ...
- STM平台增加性能测试/稳定性测试部分【一】
前置 我之前写了一个接口自动化平台的,后期因为一个原因删除了. 现在,在此平台的基础上,我又增加了性能/稳定性的功能 它的前端大概是这样: 数据解析: 图表展示: 我将稳定性及性能归与一套方案去编写, ...
- HTML学习1-Dom之事件绑定
事件: 1.注册事件 a. <div onxxxx=””></div> b. document .onxxxx= function() //找到这个标签 2.this,触发 ...
- 使用Java EE 在eclipse 开发动态的Web工程(Java web项目)
1.使用Java EE 在eclipse 开发动态的Web工程(Java web项目)1)开发开发选项切换到JavaEE2)可以在Windows->show view中找到package exp ...
- sqli-labs学习笔记 DAY7
DAY7 sqli-labs阶段总结 基本步骤 判断是否报错 判断闭合符号 判断注入类型 构建payload 手工注入或者编写脚本 基本注入类型 报错型注入 floor公式(结果多出一个1):and ...
- MegaCli64/MegaCli命令详解
基础命令学习目录首页 MegaCli64 -LDInfo -Lall -aALL这个命令能看到RAID的状态MegaCli64 -LDSetProp ForcedWB -L0 -a0MegaCli64 ...
- hive对于lzo文件处理异常Caused by: java.io.IOException: Compressed length 842086665 exceeds max block size 67108864 (probably corrupt file)
hive查询lzo数据格式文件的表时,抛 Caused by: java.io.IOException: Compressed length 842086665 exceeds max block s ...
- Django_rest_framework_Serializer
序列化Serializer 序列化用于对用户请求数据进行验证和数据进行序列化(为了解决queryset序列化问题). 那什么是序列化呢?序列化就是把对象转换成字符串,反序列化就是把字符串转换成对象 m ...
- C++ Style Languages: C++, Objective-C, Java, C#
Hyperpolyglot.org From Hyperpolyglot.org C++ Style Languages: C++, Objective-C, Java, C# a side-by-s ...
- java.util.ConcurrentModificationException: null
是因为在map.foreach中又put新的值了 在map.foreach中可能是不可以增删改